




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省海門六校聯考2024年中考數學對點突破模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在直角坐標平面內,已知點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.2.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.83.某商店有兩個進價不同的計算器都賣了80元,其中一個贏利60%,另一個虧本20%,在這次買賣中,這家商店()A.賺了10元 B.賠了10元 C.賺了50元 D.不賠不賺4.如圖,若a<0,b>0,c<0,則拋物線y=ax2+bx+c的大致圖象為()A. B. C. D.5.下列運算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x46.如圖,平行四邊形ABCD中,E,F分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.7.二次函數y=ax2+bx+c(a≠0)和正比例函數y=﹣x的圖象如圖所示,則方程ax2+(b+)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定8.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.9.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.10.多項式4a﹣a3分解因式的結果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)211.已知兩組數據,2、3、4和3、4、5,那么下列說法正確的是()A.中位數不相等,方差不相等B.平均數相等,方差不相等C.中位數不相等,平均數相等D.平均數不相等,方差相等12.將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知x+y=,xy=,則x2y+xy2的值為____.14.中,,,高,則的周長為______。15.在我國著名的數學書九章算術中曾記載這樣一個數學問題:“今有共買羊,人出五,不足四十五;人出七,不足三,問人數、羊價各幾何?”其大意是:今有人合伙買羊,若每人出5錢,還差45錢;若每人出7錢,還差3錢,問合伙人數、羊價各是多少?設羊價為x錢,則可列關于x的方程為______.16.已知n>1,M=,N=,P=,則M、N、P的大小關系為.17.計算:3﹣1﹣30=_____.18.已知雙曲線經過點(-1,2),那么k的值等于_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在中,,為邊上的中線,于點E.求證:;若,,求線段的長.20.(6分)某省為解決農村飲用水問題,省財政部門共投資20億元對各市的農村飲用水的“改水工程”予以一定比例的補助.2008年,A市在省財政補助的基礎上投入600萬元用于“改水工程”,計劃以后每年以相同的增長率投資,2010年該市計劃投資“改水工程”1176萬元.求A市投資“改水工程”的年平均增長率;從2008年到2010年,A市三年共投資“改水工程”多少萬元?21.(6分)如圖,沿AC方向開山修路.為了加快施工進度,要在小山的另一邊同時施工,從AC上的一點B取∠ABD=120°,BD=520m,∠D=30°.那么另一邊開挖點E離D多遠正好使A,C,E三點在一直線上(取1.732,結果取整數)?22.(8分)某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據調查統計結果,繪制了不完整的統計圖.請結合統計圖,回答下列問題:(1)本次調查學生共人,a=,并將條形圖補充完整;(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?(3)學校讓每班在A、B、C、D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.23.(8分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統計圖補充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機抽出兩張卡片,求抽到A,B兩班的概率.24.(10分)甲、乙兩人在5次打靶測試中命中的環數如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數
眾數
中位數
方差
甲
8
8
0.4
乙
9
3.2
(2)教練根據這5次成績,選擇甲參加射擊比賽,教練的理由是什么?(3)如果乙再射擊1次,命中8環,那么乙的射擊成績的方差.(填“變大”、“變小”或“不變”).25.(10分)如圖所示,AC=AE,∠1=∠2,AB=AD.求證:BC=DE.26.(12分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,EF過點O且與AB、CD分別交于點E、F.求證:OE=OF.27.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AD=8,DE=5,求BC的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
先求出點M到x軸、y軸的距離,再根據直線和圓的位置關系得出即可.【詳解】解:∵點M的坐標是(4,3),
∴點M到x軸的距離是3,到y軸的距離是4,
∵點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,
∴r的取值范圍是3<r<4,
故選:D.【點睛】本題考查點的坐標和直線與圓的位置關系,能熟記直線與圓的位置關系的內容是解此題的關鍵.2、B【解析】
根據垂徑定理求出AD,根據勾股定理列式求出半徑,根據三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵3、A【解析】試題分析:第一個的進價為:80÷(1+60%)=50元,第二個的進價為:80÷(1-20%)=100元,則80×2-(50+100)=10元,即盈利10元.考點:一元一次方程的應用4、B【解析】
由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】∵a<0,∴拋物線的開口方向向下,故第三個選項錯誤;∵c<0,∴拋物線與y軸的交點為在y軸的負半軸上,故第一個選項錯誤;∵a<0、b>0,對稱軸為x=>0,∴對稱軸在y軸右側,故第四個選項錯誤.故選B.5、D【解析】
根據合并同類項、單項式的乘法、積的乘方和單項式的乘法逐項計算,結合排除法即可得出答案.【詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【點睛】本題考查了合并同類項、單項式的乘法、積的乘方和單項式的乘法,熟練掌握它們的運算法則是解答本題的關鍵.6、B【解析】
由平行四邊形性質得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質和判定、平行線的性質,三角函數的運用;熟練掌握平行四邊形的性質,勾股定理,判斷出AB=CE是解決問題的關鍵.7、C【解析】
設的兩根為x1,x2,由二次函數的圖象可知,;設方程的兩根為m,n,再根據根與系數的關系即可得出結論.【詳解】解:設的兩根為x1,x2,∵由二次函數的圖象可知,,.設方程的兩根為m,n,則.故選C.【點睛】本題考查的是拋物線與x軸的交點,熟知拋物線與x軸的交點與一元二次方程根的關系是解答此題的關鍵.8、C【解析】
設B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據全等三角形對應角相等∠DAE=∠B′AE,再根據旋轉角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉的性質,正方形的性質,全等三角形判定與性質,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關鍵,也是本題的難點.9、B【解析】
先根據翻折變換的性質得到△DEF≌△AEF,再根據等腰三角形的性質及三角形外角的性質可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質、等腰直角三角形的性質、勾股定理、三角形外角的性質,涉及面較廣,但難易適中.10、B【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.11、D【解析】
分別利用平均數以及方差和中位數的定義分析,進而求出答案.【詳解】2、3、4的平均數為:(2+3+4)=3,中位數是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數為:(3+4+5)=4,中位數是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數不相等,方差相等.故選:D.【點睛】本題考查了平均數、中位數、方差的意義,解答本題的關鍵是熟練掌握這三種數的計算方法.12、D【解析】根據“左加右減、上加下減”的原則,將拋物線向左平移1個單位所得直線解析式為:;再向下平移3個單位為:.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.14、32或42【解析】
根據題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.【點睛】本題主要考查勾股定理,根據題意,畫出圖形,分類進行計算,是解題的關鍵.15、【解析】
設羊價為x錢,根據題意可得合伙的人數為或,由合伙人數不變可得方程.【詳解】設羊價為x錢,根據題意可得方程:,故答案為:.【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.16、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點睛:本題考查了不等式的性質和利用作差法比較兩個代數式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.17、﹣.【解析】
原式利用零指數冪、負整數指數冪法則計算即可求出值.【詳解】原式=﹣1=﹣.故答案是:﹣.【點睛】考查了實數的運算,熟練掌握運算法則是解本題的關鍵.18、-1【解析】
分析:根據點在曲線上點的坐標滿足方程的關系,將點(-1,2)代入,得:,解得:k=-1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2).【解析】
對于(1),由已知條件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性質易得AD⊥BC,∠ADC=90°;接下來不難得到∠ADC=∠BED,至此問題不難證明;對于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【詳解】解:(1)證明:∵,∴.又∵為邊上的中線,∴.∵,∴,∴.(2)∵,∴.在中,根據勾股定理,得.由(1)得,∴,即,∴.【點睛】此題考查相似三角形的判定與性質,解題關鍵在于掌握判定定理.20、(1)40%;(2)2616.【解析】
(1)設A市投資“改水工程”的年平均增長率是x.根據:2008年,A市投入600萬元用于“改水工程”,2010年該市計劃投資“改水工程”1176萬元,列方程求解;(2)根據(1)中求得的增長率,分別求得2009年和2010年的投資,最后求和即可.【詳解】解:(1)設A市投資“改水工程”年平均增長率是x,則.解之,得或(不合題意,舍去).所以,A市投資“改水工程”年平均增長率為40%.(2)600+600×1.4+1176=2616(萬元).A市三年共投資“改水工程”2616萬元.21、450m.【解析】
若要使A、C、E三點共線,則三角形BDE是以∠E為直角的三角形,利用三角函數即可解得DE的長.【詳解】解:,,,在中,,,,.答:另一邊開挖點離,正好使,,三點在一直線上.【點睛】本題考查的知識點是解直角三角形的應用和勾股定理的運用,解題關鍵是是熟記含30°的直角三角形的性質.22、(1)300,10;(2)有800人;(3).【解析】試題分析:試題解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,圖形如下:(2)2000×40%=800(人),答:估計該校選擇“跑步”這種活動的學生約有800人;(3)畫樹狀圖為:共有12種等可能的結果數,其中每班所抽到的兩項方式恰好是“跑步”和“跳繩”的結果數為2,所以每班所抽到的兩項方式恰好是“跑步”和“跳繩”的概率=.考點:1.用樣本估計總體;2.扇形統計圖;3.條形統計圖;4.列表法與樹狀圖法.23、(1)25件;(2)見解析;(3)B班的獲獎率高;(4)16【解析】試題分析:(1)直接利用扇形統計圖中百分數,進而求出B班參賽作品數量;(2)利用C班提供的參賽作品的獲獎率為50%,結合C班參賽數量得出獲獎數量;(3)分別求出各班的獲獎百分率,進而求出答案;(4)利用樹狀統計圖得出所有符合題意的答案進而求出其概率.試題解析:(1)由題意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班參賽作品有25件;(2)∵C班提供的參賽作品的獲獎率為50%,∴C班的參賽作品的獲獎數量為:100×20%×50%=10(件),如圖所示:;(3)A班的獲獎率為:14100×35%×100%=40%,B班的獲獎率為:11C班的獲獎率為:1020=50%;D班的獲獎率為:8故C班的獲獎率高;(4)如圖所示:,故一共有12種情況,符合題意的有2種情況,則從中一次隨機抽出兩張卡片,求抽到A、B兩班的概率為:212=1考點:1.列表法與樹狀圖法;2.扇形統計圖;3.條形統計圖.24、(1)填表見解析;(2)理由見解析;(3)變小.【解析】
(1)根據眾數、平均數和中位數的定義求解:(2)方差就是和中心偏離的程度,用來衡量一批數據的波動大小(即這批數據偏離平均數的大小)在樣本容量相同的情況下,方差越大,說明數據的波動越大,越不穩定.(3)根據方差公式求解:如果乙再射擊1次,命中8環,那么乙的射擊成績的方差變小.【詳解】試題分析:試題解析:解:(1)甲的眾數為8,乙的平均數=(5+9+7+10+9)=8,乙的中位數為9.故填表如下:平均數
眾數
中位數
方差
甲
8
8
8
0.4
乙
8
9
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國多動癥藥物行業市場發展趨勢與前景展望戰略研究報告
- 革命史料、史志編輯服務企業制定與實施新質生產力戰略研究報告
- 2025-2030中國城市燃氣行業發展分析及投資戰略咨詢報告
- 2025-2030中國圖片燈行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國噴涂泡沫絕緣材料行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國商業智能行業市場發展趨勢與前景展望戰略研究報告
- 物業回收地毯合同范本
- 寧波慈溪市橫河鎮中心衛生院招聘考試真題2024
- 知識產權定價與法律規范-全面剖析
- 公共交通建設進度計劃與實施措施
- 甘肅省白銀市2024年中考英語真題
- 2024小語新教材培訓:小學語文教材里的“變”與“不變”
- 防雷與接地裝置安裝方案
- 員工勞動合同模板
- 2024統編新版小學三年級語文上冊第八單元 大單元整體教學設計
- 施工進度計劃橫道圖
- 電磁學智慧樹知到期末考試答案章節答案2024年天津大學
- 重慶市潼南區六校2022-2023學年七年級下學期期中地理試題
- 單位車輛授權委托書模板
- 應征公民政治考核表(含各種附表)
- 戲劇與美育智慧樹知到期末考試答案章節答案2024年長江人民藝術劇院
評論
0/150
提交評論