湖北省大冶市一中2025屆數學高一下期末教學質量檢測試題含解析_第1頁
湖北省大冶市一中2025屆數學高一下期末教學質量檢測試題含解析_第2頁
湖北省大冶市一中2025屆數學高一下期末教學質量檢測試題含解析_第3頁
湖北省大冶市一中2025屆數學高一下期末教學質量檢測試題含解析_第4頁
湖北省大冶市一中2025屆數學高一下期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省大冶市一中2025屆數學高一下期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設函數是定義在上的奇函數,當時,,則()A.-4 B. C. D.2.已知集合,則()A. B. C. D.3.若直線與圓交于兩點,關于直線對稱,則實數的值為()A. B. C. D.4.函數的部分圖像如圖所示,則A.B.C.D.5.如圖,已知平行四邊形,,則()A. B.C. D.6.已知且為常數,圓,過圓內一點的直線與圓相交于兩點,當弦最短時,直線的方程為,則的值為()A.2 B.3 C.4 D.57.已知向量是單位向量,=(3,4),且在方向上的投影為,則A.36 B.21 C.9 D.68.從裝有紅球、白球和黑球各2個的口袋內一次取出2個球,則與事件“兩球都為白球”互斥而非對立的事件是以下事件“①兩球都不是白球;②兩球恰有一個白球;③兩球至少有一個白球”中的()A.①② B.①③C.②③ D.①②③9.在中,角A,B,C所對的邊分別為a,b,c,,,,則等于()A. B. C. D.110.已知等差數列an的前n項和為18,若S3=1,aA.9 B.21 C.27 D.36二、填空題:本大題共6小題,每小題5分,共30分。11.把數列的各項排成如圖所示三角形狀,記表示第m行、第n個數的位置,則在圖中的位置可記為____________.12.某課題組進行城市空氣質量調查,按地域把24個城市分成甲、乙、丙三組,對應的城市數分別為4,12,8,若用分層抽樣抽取6個城市,則丙組中應抽取的城市數為_______.13.兩平行直線與之間的距離為_______.14.函數的最小正周期是________.15.已知在數列中,,,則數列的通項公式______.16.已知數列前項和,則該數列的通項公式______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知等比數列的公比為,是的前項和;(1)若,,求的值;(2)若,,有無最值?說明理由;(3)設,若首項和都是正整數,滿足不等式,且對于任意正整數有成立,問:這樣的數列有幾個?18.中,角所對的邊分別為,已知.(1)求角的大小;(2)若,求面積的最大值.19.某校為了了解學生每天平均課外閱讀的時間(單位:分鐘),從本校隨機抽取了100名學生進行調查,根據收集的數據,得到學生每天課外閱讀時間的頻率分布直方圖,如圖所示,若每天課外閱讀時間不超過30分鐘的有45人.(Ⅰ)求,的值;(Ⅱ)根據頻率分布直方圖,估計該校學生每天課外閱讀時間的中位數及平均值(同一組中的數據用該組區間的中點值代表).20.如圖,在平面四邊形中,已知,,,為線段上一點.(1)求的值;(2)試確定點的位置,使得最小.21.已知等差數列與等比數列滿足,,且.(1)求數列,的通項公式;(2)設,是否存在正整數,使恒成立?若存在,求出的值;若不存在,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由奇函數的性質可得:即可求出【詳解】因為是定義在上的奇函數,所以又因為當時,,所以,所以,選A.【點睛】本題主要考查了函數的性質中的奇偶性。其中奇函數主要有以下幾點性質:1、圖形關于原點對稱。2、在定義域上滿足。3、若定義域包含0,一定有。2、A【解析】

由,得,然后根據集合的交集運算,即可得到本題答案.【詳解】因為,所以.故選:A【點睛】本題主要考查集合的交集運算及對數不等式.3、A【解析】

由題意,得直線是線段的中垂線,則其必過圓的圓心,將圓心代入直線,即可得本題答案.【詳解】解:由題意,得直線是線段的中垂線,所以直線過圓的圓心,圓的圓心為,,解得.故選:A.【點睛】本題給出直線與圓相交,且兩個交點關于已知直線對稱,求參數的值.著重考查了直線與圓的位置關系等知識,屬于基礎題.4、A【解析】試題分析:由題圖知,,最小正周期,所以,所以.因為圖象過點,所以,所以,所以,令,得,所以,故選A.【考點】三角函數的圖像與性質【名師點睛】根據圖像求解析式問題的一般方法是:先根據函數圖像的最高點、最低點確定A,h的值,由函數的周期確定ω的值,再根據函數圖像上的一個特殊點確定φ值.5、A【解析】

根據平面向量的加法運算,即可得到本題答案.【詳解】由題,得.故選:A【點睛】本題主要考查平面向量的加法運算,屬基礎題.6、B【解析】

由圓的方程求出圓心坐標與半徑,結合題意,可得過圓心與點(1,2)的直線與直線2x﹣y=0垂直,再由斜率的關系列式求解.【詳解】圓C:化簡為圓心坐標為,半徑為.如圖,由題意可得,當弦最短時,過圓心與點(1,2)的直線與直線垂直.則,即a=1.故選:B.【點睛】本題考查直線與圓位置關系的應用,考查數形結合的解題思想方法與數學轉化思想方法,是中檔題.一般直線和圓的題很多情況下是利用數形結合來解決的,聯立的時候較少;在求圓上的點到直線或者定點的距離時,一般是轉化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值;涉及到圓的弦長或者切線長時,經常用到垂徑定理.7、D【解析】

根據公式把模轉化為數量積,展開后再根據和已知條件計算.【詳解】因為在方向上的投影為,所以,.故選D.【點睛】本題主要考查向量模有關的計算,常用公式有,.8、A【解析】試題分析:結合互斥事件和對立事件的定義,即可得出結論解:根據題意,結合互斥事件、對立事件的定義可得,事件“兩球都為白球”和事件“兩球都不是白球”;事件“兩球都為白球”和事件“兩球中恰有一白球”;不可能同時發生,故它們是互斥事件.但這兩個事件不是對立事件,因為他們的和事件不是必然事件.故選A考點:互斥事件與對立事件.9、D【解析】

根據題意,由正弦定理得,再把,,代入求解.【詳解】由正弦定理,得,所以.故選:D【點睛】本題主要考查了正弦定理的應用,還考查了運算求解的能力,屬于基礎題.10、C【解析】

利用前n項和Sn的性質可求n【詳解】因為S3而a1所以6Snn【點睛】一般地,如果an為等差數列,Sn為其前(1)若m,n,p,q∈N*,m+n=p+q,則am(2)Sn=n(3)Sn=An(4)Sn二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用第m行共有個數,前m行共有個數,得的位置即可求解【詳解】因為第m行共有個數,前m行共有個數,所以應該在第11行倒數第二個數,所以的位置為.故答案為:【點睛】本題考查等差數列的通項和求和公式,發現每行個數成等差是關鍵,是基礎題12、2【解析】

根據抽取6個城市作為樣本,得到每個個體被抽到的概率,用概率乘以丙組的數目,即可得到結果.【詳解】城市有甲、乙、丙三組,對應的城市數分別為4,12,8.

本市共有城市數24,用分層抽樣的方法從中抽取一個容量為6的樣本,

每個個體被抽到的概率是,丙組中對應的城市數8,則丙組中應抽取的城市數為,故答案為2.【點睛】本題主要考查分層抽樣的應用以及古典概型概率公式的應用,屬于基礎題.分層抽樣適合總體中個體差異明顯,層次清晰的抽樣,其主要性質是,每個層次,抽取的比例相同.13、【解析】

先根據兩直線平行求出,再根據平行直線間的距離公式即可求出.【詳解】因為直線的斜率為,所以直線的斜率存在,,即,解得或.當時,,即,故兩平行直線的距離為.當時,,,兩直線重合,不符合題意,應舍去.故答案為:.【點睛】本題主要考查平行直線間的距離公式的應用,以及根據兩直線平行求參數,屬于基礎題.14、【解析】

根據函數的周期公式計算即可.【詳解】函數的最小正周期是.故答案為【點睛】本題主要考查了正切函數周期公式的應用,屬于基礎題.15、【解析】

通過變形可知,累乘計算即得結論.【詳解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案為:an=n.【點睛】本題考查數列的通項公式的求法,利用累乘法是解決本題的關鍵,注意解題方法的積累,屬于中檔題.16、【解析】

由,n≥2時,兩式相減,可得{an}的通項公式;【詳解】∵Sn=2n2(n∈N*),∴n=1時,a1=S1=2;n≥2時,an=Sn﹣=4n﹣2,a1=2也滿足上式,∴an=4n﹣2故答案為【點睛】本題考查數列的遞推式,考查數列的通項,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),最小值,最大值;,最小值,無最大值;(3)個【解析】

(1)由,分類討論,分別求得,結合極限的運算,即可求解;(2)由等比數列的前項和公式,求得,再分和兩種情況討論,即可求解,得到結論;(3)由不等式,求得,在由等比數列的前項和公式,得到,根據不等式成立,可得,結合數列的單調性,即可求解.【詳解】(1)由題意,等比數列,且,①當時,可得,,所以,②當時,可得,所以,綜上所述,當,時,.(2)由等比數列的前項和公式,可得,因為且,所以,①當時,單調遞增,此時有最小值,無最大值;②當時,中,當為偶數時,單調遞增,且;當為奇數時,單調遞減,且;分析可得:有最大值,最小值為;綜上述,①當時,的最小值為,最大值為;②當時,的最小值為,無最大值;(3)由不等式,可得,又由等比數列的前項和公式,可得,因為首項和都是正整數,所以,又由對于任意正整數有成立,可得,聯立可得,設,由為正整數,可得單調遞增,所以函數單調遞減,所以,且所以,當時,,即,解得,此時有個,當時,,即,解得,此時有個,所以共有個.【點睛】本題主要考查了等比數列的前項和公式,數列的極限的計算,以及數列的單調性的綜合應用,其中解答中熟記等比數列的前項和公式,極限的運算法則,以及合理分類討論是解答的關鍵,著重考查了分類討論思想,以及分析問題和解答問題的能力,屬于難題.18、(1);(2).【解析】

(1)由正弦定理化邊為角,再由同角間的三角函數關系化簡可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面積最大值.【詳解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,當且僅當時等號成立.∴,,最大值為.【點睛】本題考查正弦定理和余弦定理,考查同角間的三角函數關系,考查基本不等式求最值.本題主要是考查的公式較多,掌握所有公式才能正確解題.本題屬于中檔題.19、(Ⅰ);(Ⅱ)中位數估計值為32,平均數估計值為32.5.【解析】

(Ⅰ)由頻率分布直方圖的性質列出方程組,能求出,;(Ⅱ)由頻率分布直方圖,能估計該校學生每天課外閱讀時間的中位數及平均值.【詳解】(Ⅰ)由題意得,解得(Ⅱ)設該校學生每天課外閱讀時間的中位數估計值為,則解得:.該校學生每天課外閱讀時間的平均數估計值為:.答:該校學生每天課外閱讀時間的中位數估計值為32,平均數估計值為32.5.【點睛】本題考查頻率、中位數、平均數的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,是基礎題.20、(1);(2)見解析【解析】

(1)通過,,可得,從而通過可以求出,再確定的值.(2)法一:設(),可以利用基底法將表示為t的函數,然后求得最小值;法二:建立平面直角坐標系,設(),然后表示出相關點的坐標,從而求得最小值.【詳解】(1),,,,,即,,(2)法一:設(),則,,當時,即時,最小法二:建立如圖平面直角坐標系,則,,,,設(),則,當時,即時,最小.【點睛】本題主要考查向量的數量積運算,數形結合思想及函數思想,意在考查學生的劃歸能力和分析能力,難度較大.21、(1),.(2)存在正整數,,證明見解析【解析】

(1)根據題意,列出關于d與q的兩個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論