




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙雅禮集團中考數學全真模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.2.下列哪一個是假命題()A.五邊形外角和為360°B.切線垂直于經過切點的半徑C.(3,﹣2)關于y軸的對稱點為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=23.下列實數中,無理數是()A.3.14 B.1.01001 C. D.4.(3分)學校要組織足球比賽.賽制為單循環形式(每兩隊之間賽一場).計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽.根據題意,下面所列方程正確的是()A.B.C.D.5.地球上的陸地面積約為149000000千米2,用科學記數法表示為()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千26.在數軸上標注了四段范圍,如圖,則表示的點落在()A.段① B.段② C.段③ D.段④7.下列各式計算正確的是()A. B. C. D.8.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或69.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數字1、2、3、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數字之積為偶數的概率是()A. B. C. D.10.如圖,正六邊形ABCDEF內接于⊙O,半徑為4,則這個正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.23二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:ab2﹣9a=_____.12.如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉90°后,得到△A′O′B,且反比例函數y=的圖象恰好經過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k=_____.13.如圖,等邊三角形的頂點A(1,1)、B(3,1),規定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續經過2018次變換后,等邊△ABC的頂點C的坐標為_____.14.如圖,菱形ABCD的面積為120cm2,正方形AECF的面積為50cm2,則菱形的邊長____cm.15.已知點A(2,4)與點B(b﹣1,2a)關于原點對稱,則ab=_____.16.在平面直角坐標系中,拋物線y=x2+x+2上有一動點P,直線y=﹣x﹣2上有一動線段AB,當P點坐標為_____時,△PAB的面積最小.17.已知一個正數的平方根是3x-2和5x-6,則這個數是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,經過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關于直線x=2對稱,求拋物線的函數表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.19.(5分)我省有關部門要求各中小學要把“陽光體育”寫入課表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數據,如圖1是根據這組數據繪制的條形統計圖,請結合統計圖回答下列問題:該校對多少名學生進行了抽樣調查?本次抽樣調查中,最喜歡足球活動的有多少人?占被調查人數的百分比是多少?若該校九年級共有400名學生,圖2是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請你估計全校學生中最喜歡籃球活動的人數約為多少?20.(8分)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉”政策的實施,商場決定采取適當的降價措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?21.(10分)如圖,在邊長為1個單位長度的小正方形組成的12×12網格中建立平面直角坐標系,格點△ABC(頂點是網格線的交點)的坐標分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)將△ABC繞點O逆時針旋轉90°得到△DEF,畫出△DEF;(2)以O為位似中心,將△ABC放大為原來的2倍,在網格內畫出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點,這次變換后的對應點P1的坐標為.22.(10分)(1)計算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡,再求值:()÷,其中x=﹣1.23.(12分)已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標系,以點P(4,0)為圓心,PA長為半徑畫圓,⊙P與x軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設運動時間為ts,解答下列問題:(發現)(1)的長度為多少;(2)當t=2s時,求扇形MPN(陰影部分)與Rt△ABO重疊部分的面積.(探究)當⊙P和△ABO的邊所在的直線相切時,求點P的坐標.(拓展)當與Rt△ABO的邊有兩個交點時,請你直接寫出t的取值范圍.24.(14分)某經銷商經銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.(1)二月份冰箱每臺售價為多少元?(2)為了提高利潤,該經銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預計用不多于7.6萬元的資金購進這兩種家電共20臺,設冰箱為y臺(y≤12),請問有幾種進貨方案?(3)三月份為了促銷,該經銷商決定在二月份售價的基礎上,每售出一臺冰箱再返還顧客現金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應取何值?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
三粒均勻的正六面體骰子同時擲出共出現216種情況,而邊長能構成直角三角形的數字為3、4、5,含這三個數字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現數字的不同共=216種情況,其中數字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.2、C【解析】分析:根據每個選項所涉及的數學知識進行分析判斷即可.詳解:A選項中,“五邊形的外角和為360°”是真命題,故不能選A;B選項中,“切線垂直于經過切點的半徑”是真命題,故不能選B;C選項中,因為點(3,-2)關于y軸的對稱點的坐標是(-3,-2),所以該選項中的命題是假命題,所以可以選C;D選項中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質;(3)點P(a,b)關于y軸的對稱點為(-a,b);(4)拋物線的對稱軸是直線:等數學知識,是正確解答本題的關鍵.3、C【解析】
先把能化簡的數化簡,然后根據無理數的定義逐一判斷即可得.【詳解】A、3.14是有理數;B、1.01001是有理數;C、是無理數;D、是分數,為有理數;故選C.【點睛】本題主要考查無理數的定義,屬于簡單題.4、B.【解析】試題分析:設有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:,故選B.考點:由實際問題抽象出一元二次方程.5、C【解析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值大于10時,n是正數;當原數的絕對值小于1時,n是負數.解:149
000
000=1.49×2千米1.故選C.把一個數寫成a×10n的形式,叫做科學記數法,其中1≤|a|<10,n為整數.因此不能寫成149×106而應寫成1.49×2.6、C【解析】試題分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以應在③段上.故選C考點:實數與數軸的關系7、C【解析】
解:A.2a與2不是同類項,不能合并,故本選項錯誤;B.應為,故本選項錯誤;C.,正確;D.應為,故本選項錯誤.故選C.【點睛】本題考查冪的乘方與積的乘方;同底數冪的乘法.8、C【解析】
由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點睛】本題考查了平面直角坐標系的內容,理解題意是解題關鍵.9、C【解析】【分析】畫樹狀圖展示所有16種等可能的結果數,再找出兩次抽取的卡片上數字之積為偶數的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結果數,其中兩次抽取的卡片上數字之積為偶數的結果數為12,所以兩次抽取的卡片上數字之積為偶數的概率=,故選C.【點睛】本題考查了列表法與樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.10、D【解析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點:1正多邊形和圓;2.弧長的計算.二、填空題(共7小題,每小題3分,滿分21分)11、a(b+3)(b﹣3).【解析】
根據提公因式,平方差公式,可得答案.【詳解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案為:a(b+3)(b﹣3).【點睛】本題考查了因式分解,一提,二套,三檢查,分解要徹底.12、1【解析】設點C坐標為(x,y),作CD⊥BO′交邊BO′于點D,∵tan∠BAO=2,∴=2,∵S△ABO=?AO?BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵點C為斜邊A′B的中點,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案為1.13、(﹣2016,+1)【解析】
據軸對稱判斷出點C變換后在x軸上方,然后求出點C縱坐標,再根據平移的距離求出點A變換后的橫坐標,最后寫出即可.【詳解】解:∵△ABC是等邊三角形AB=3﹣1=2,∴點C到x軸的距離為1+2×=+1,橫坐標為2,∴C(2,+1),第2018次變換后的三角形在x軸上方,點C的縱坐標為+1,橫坐標為2﹣2018×1=﹣2016,所以,點C的對應點C′的坐標是(﹣2016,+1)故答案為:(﹣2016,+1)【點睛】本題考查坐標與圖形變化,平移和軸對稱變換,等邊三角形的性質,讀懂題目信息,確定出連續2018次這樣的變換得到三角形在x軸上方是解題的關鍵.14、13【解析】試題解析:因為正方形AECF的面積為50cm2,所以因為菱形ABCD的面積為120cm2,所以所以菱形的邊長故答案為13.15、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.16、(-1,2)【解析】
因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,平移直線與拋物線的切點即為P點,然后求得平移后的直線,聯立方程,解方程即可.【詳解】因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,若直線向上平移與拋物線相切,切點即為P點,設平移后的直線為y=-x-2+b,∵直線y=-x-2+b與拋物線y=x2+x+2相切,∴x2+x+2=-x-2+b,即x2+2x+4-b=0,則△=4-4(4-b)=0,∴b=3,∴平移后的直線為y=-x+1,解得x=-1,y=2,∴P點坐標為(-1,2),故答案為(-1,2).【點睛】本題主要考查了二次函數圖象上點的坐標特征,三角形的面積以及解方程等,理解直線向上平移與拋物線相切,切點即為P點是解題的關鍵.17、【解析】
試題解析:根據題意,得:解得:故答案為【點睛】:一個正數有2個平方根,它們互為相反數.三、解答題(共7小題,滿分69分)18、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】
(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數表達式為;(3)存在,理由為:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).19、(1)該校對50名學生進行了抽樣調查;(2)最喜歡足球活動的人占被調查人數的20%;(3)全校學生中最喜歡籃球活動的人數約為720人.【解析】
(1)根據條形統計圖,求個部分數量的和即可;(2)根據部分除以總體求得百分比;(3)根據扇形統計圖中各部分占總體的百分比之和為1,求出百分比即可求解.【詳解】(1)4+8+10+18+10=50(名)答:該校對50名學生進行了抽樣調查.(2)最喜歡足球活動的有10人,,∴最喜歡足球活動的人占被調查人數的20%.(3)全校學生人數:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)則全校學生中最喜歡籃球活動的人數約為2000×=720(人).【點睛】此題主要考查了條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚的表示出每個項目的數據;扇形統計圖中各部分占總體的百分比之和為1,直接反應部分占全體的百分比的大小.20、100或200【解析】試題分析:此題利用每一臺冰箱的利潤×每天售出的臺數=每天盈利,設出每臺冰箱應降價x元,列方程解答即可.試題解析:設每臺冰箱應降價x元,每件冰箱的利潤是:元,賣(8+×4)件,列方程得,(8+×4)=4800,x2﹣300x+20000=0,解得x1=200,x2=100;要使百姓得到實惠,只能取x=200,答:每臺冰箱應降價200元.考點:一元二次方程的應用.21、(1)見解析;(2)見解析,(﹣2x,﹣2y).【解析】
(1)利用網格特點和旋轉的性質畫出點A、B、C的對應點D、E、F,即可得到△DEF;(2)先根據位似中心的位置以及放大的倍數,畫出原三角形各頂點的對應頂點,再順次連接各頂點,得到△A1B1C1,根據△A1B1C1結合位似的性質即可得P1的坐標.【詳解】(1)如圖所示,△DEF即為所求;(2)如圖所示,△A1B1C1即為所求,這次變換后的對應點P1的坐標為(﹣2x,﹣2y),故答案為(﹣2x,﹣2y).【點睛】本題主要考查了位似變換與旋轉變換,解決問題的關鍵是先作出圖形各頂點的對應頂點,再連接各頂點得到新的圖形.在畫位似圖形時需要注意,位似圖形的位似中心可能在兩個圖形之間,也可能在兩個圖形的同側.22、(1)(2)【解析】
(1)根據負整數指數冪、二次根式、零指數冪和特殊角的三角函數值可以解答本題;(2)根據分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.【詳解】解:(1)原式=﹣+1+2=﹣+1+=﹣;(2)原式====,當x=﹣1時,原式==.【點睛】本題考查分式的化簡求值、絕對值、零指數冪、負整數指數冪和特殊角的三角函數值,解答本題的關鍵是明確它們各自的計算方法.23、【發現】(3)的長度為;(2)重疊部分的面積為;【探究】:點P的坐標為;或或;【拓展】t的取值范圍是或,理由見解析.【解析】
發現:(3)先確定出扇形半徑,進而用弧長公式即可得出結論;(2)先求出PA=3,進而求出PQ,即可用面積公式得出結論;探究:分圓和直線AB和直線OB相切,利用三角函數即可得出結論;拓展:先找出和直角三角形的兩邊有兩個交點時的分界點,即可得出結論.【詳解】[發現](3)∵P(2,0),∴OP=2.∵OA=3,∴AP=3,∴的長度為.故答案為;(2)設⊙P半徑為r,則有r=2﹣3=3,當t=2時,如圖3,點N與點A重合,∴PA=r=3,設MP與AB相交于點Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重疊部分=S△APQPQ×AQ.即重疊部分的面積為.[探究]①如圖2,當⊙P與直線AB相切于點C時,連接PC,則有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴點P的坐標為(3,0);②如圖3,當⊙P與直線OB相切于點D時,連接PD,則有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴點P的坐標為(,0);③如圖2,當⊙P與直線OB相切于點E時,連接PE,則有PE⊥OB,同②可得:OP;∴點P的坐標為(,0);[拓展]t的取值范圍是2<t≤3,2≤t<4,理由:如圖4,當點N運動到與點A重合時,與Rt△ABO的邊有一個公共點,此時t=2;當t>2,直到⊙P運動到與AB相切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024四川航空股份有限公司成熟航權時刻協調員社會招聘筆試參考題庫附帶答案詳解
- 七年級道德與法治上冊 第四單元 生命的思考 第八課 探問生命 第一框 生命可以永恒嗎教學設計 新人教版
- 九年級歷史下冊 第三單元 第9課 世界戰火的重燃教學設計 冀教版
- 人教版三年級下冊4 兩位數乘兩位數筆算乘法教案
- 人教版五至六年級第六章 球類運動第二節 小足球教學設計
- 五年級信息技術上冊 第3課 未來的電腦教學設計 華中師大版
- 人教精通版三年級下冊Recycle 1教案
- 初中物理第2節 光的反射教學設計及反思
- 服務話術規范與標準培訓
- 人教部編版三年級上冊18 富饒的西沙群島表格教案及反思
- 門頭廣告合同協議
- 施工安全的教育培訓記錄表
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蝕工程施工及驗收規范
- MOOC 敦煌文學藝術-浙江師范大學 中國大學慕課答案
- 貫徹落實八項規定精神情況自查表
- GA/T 1073-2013生物樣品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、異丙醇和正丁醇的頂空-氣相色譜檢驗方法
- 國家職業技能標準 (2021年版) 鑒定估價師(機動車鑒定評估師)
- 幼兒園老師愛的故事——感受一個聽障兒童的成長
- 水利工程監理安全臺賬
- 《美麗的集郵冊》朗誦
- 35kV-220kV架空送電線路維護管理方案
評論
0/150
提交評論