




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆河南省鄭州外國語中學高一數學第二學期期末質量跟蹤監視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在數列中,已知,,則該數列前2019項的和()A.2019 B.2020 C.4038 D.40402.圓的圓心坐標和半徑分別為()A. B. C. D.3.設公差不為零的等差數列an的前n項和為Sn.若a2+A.10 B.11 C.12 D.134.在中,,且,若,則()A.2 B.1 C. D.5.△ABC的內角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.36.已知,若,則等于()A. B.1 C.2 D.7.三棱錐則二面角的大小為()A. B. C. D.8.為了得到函數,(x∈R)的圖象,只需將(x∈R)的圖象上所有的點().A.向右平移個單位 B.向左平移個單位C.向右平移個單位 D.向左平移個單位9.函數,的值域是()A. B. C. D.10.執行如下的程序框圖,則輸出的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設為等差數列的前n項和,,則________.12.已知數列的通項公式為,是其前項和,則_____.(結果用數字作答)13.已知,且這三個數可適當排序后成等差數列,也可適當排序后成等比數列,則_______________.14.圓上的點到直線的距離的最小值是______.15.若一個圓柱的側面展開圖是邊長為2的正方形,則此圓柱的體積為.16.數列滿足,設為數列的前項和,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓,點,直線.(1)求與直線l垂直,且與圓C相切的直線方程;(2)在x軸上是否存在定點B(不同于點A),使得對于圓C上任一點P,為常數?若存在,試求這個常數值及所有滿足條件的點B的坐標;若不存在,請說明理由.18.高二數學期中測試中,為了了解學生的考試情況,從中抽取了個學生的成績(滿分為100分)進行統計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(圖中僅列出得分在[50,60),[90,100]的數據).(1)求樣本容量和頻率分布直方圖中的值;(2)在選取的樣本中,從成績是80分以上(含80分)的同學中隨機抽取3名參加志愿者活動,所抽取的3名同學中至少有一名成績在[90,100]內的概率..19.如圖,中,,角的平分線長為1.(1)求;(2)求邊的長.20.已知數列的前項和,函數對任意的都有,數列滿足.(1)求數列,的通項公式;(2)若數列滿足,是數列的前項和,是否存在正實數,使不等式對于一切的恒成立?若存在請求出的取值范圍;若不存在請說明理由.21.如圖,在四棱錐中,平面,底面是菱形,連,交于點.(Ⅰ)若點是側棱的中點,連,求證:平面;(Ⅱ)求證:平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據條件判斷出為等差數列,利用等差數列的性質得到和之間的關系,得到答案.【詳解】為等差數列【點睛】本題考查等差中項,等差數列的基本性質,屬于簡單題.2、B【解析】
根據圓的標準方程形式直接確定出圓心和半徑.【詳解】因為圓的方程為:,所以圓心為,半徑,故選:B.【點睛】本題考查給定圓的方程判斷圓心和半徑,難度較易.圓的標準方程為,其中圓心是,半徑是.3、C【解析】
由等差數列的前n項和公式Sn=n(a1+an)【詳解】∵S13=117,∴13a1+a132=117,∴a1【點睛】本題考查等差數列的性質求和前n項和公式及等差數列下標和的性質,屬于基礎題。4、A【解析】
取的中點,連接,根據,即可得解.【詳解】取的中點,連接,在中,,且,所以,.故選:A【點睛】此題考查求向量的數量積,涉及平面向量的線性運算,根據數量積的幾何意義求解,可以簡化計算.5、A【解析】
利用余弦定理推論得出a,b,c關系,在結合正弦定理邊角互換列出方程,解出結果.【詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【點睛】本題考查正弦定理及余弦定理推論的應用.6、A【解析】
首先根據?(cos﹣3)cos+sin(sin﹣3)=﹣1,并化簡得出,再化為Asin()形式即可得結果.【詳解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化簡得,即sin()=,則sin()=故選A.【點睛】本題考查了三角函數的化簡求值以及向量的數量積的運算,屬于基礎題.7、B【解析】
P在底面的射影是斜邊的中點,設AB中點為D過D作DE垂直AC,垂足為E,則∠PED即為二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【詳解】因為AB=10,BC=8,CA=6所以底面為直角三角形又因為PA=PB=PC所以P在底面的射影為直角三角形ABC的外心,為AB中點.設AB中點為D過D作DE垂直AC,垂足為E,所以DE平行BC,且DEBC=4,所以∠PED即為二面角P﹣AC﹣B的平面角.因為PD為三角形PAB的中線,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小為60°故答案為60°.【點睛】本題考查的知識點是二面角的平面角及求法,確定出二面角的平面角是解答本題的關鍵.8、D【解析】
根據函數的平移原則,即可得出結果.【詳解】因為,,所以為了得到函數的圖象,只需將的圖象上所有的點向左平移個單位.故選D【點睛】本題主要考查三角函數的平移,熟記左加右減的原則即可,屬于基礎題型.9、A【解析】
由的范圍求出的范圍,結合余弦函數的性質即可求出函數的值域.【詳解】∵,∴,∴當,即時,函數取最大值1,當即時,函數取最小值,即函數的值域為,故選A.【點睛】本題主要考查三角函數在給定區間內求函數的值域問題,通過自變量的范圍求出整體的范圍是解題的關鍵,屬基礎題.10、A【解析】
列出每一步算法循環,可得出輸出結果的值.【詳解】滿足,執行第一次循環,,;成立,執行第二次循環,,;成立,執行第三次循環,,;成立,執行第四次循環,,;成立,執行第五次循環,,;成立,執行第六次循環,,;成立,執行第七次循環,,;成立,執行第八次循環,,;不成立,跳出循環體,輸出的值為,故選:A.【點睛】本題考查算法與程序框圖的計算,解題時要根據算法框圖計算出算法的每一步,考查分析問題和計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、54.【解析】
設首項為,公差為,利用等差數列的前n項和公式列出方程組,解方程求解即可.【詳解】設首項為,公差為,由題意,可得解得所以.【點睛】本題主要考查了等差數列的前n項和公式,解方程的思想,屬于中檔題.12、.【解析】
由題意知,數列的偶數項成等差數列,奇數列成等比數列,然后利用等差數列和等比數列的求和公式可求出的值.【詳解】由題意可得,故答案為.【點睛】本題考查奇偶分組求和,同時也考查等差數列求和以及等比數列求和,解題時要得出公差和公比,同時也要確定出對應的項數,考查運算求解能力,屬于中等題.13、5【解析】
試題分析:由題意得,為等差數列時,一定為等差中項,即,為等比數列時,-2為等比中項,即,所以.考點:等差,等比數列的性質14、【解析】
求圓心到直線的距離,用距離減去半徑即可最小值.【詳解】圓C的圓心為,半徑為,圓心C到直線的距離為:,所以最小值為:故答案為:【點睛】本題考查圓上的點到直線的距離的最值,若圓心距為d,圓的半徑為r且圓與直線相離,則圓上的點到直線距離的最大值為d+r,最小值為d-r.15、2【解析】試題分析:設圓柱的底面半徑為r,高為h,底面積為S,體積為V,則有2πr=2?r=1π,故底面面積S=πr考點:圓柱的體積16、【解析】
先利用裂項求和法將數列的通項化簡,并求出,由此可得出的值.【詳解】,.,因此,,故答案為:.【點睛】本題考查裂項法求和,要理解裂項求和法對數列通項結構的要求,并熟悉裂項法求和的基本步驟,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或(2)存在,,【解析】
(1)先設與直線l垂直的直線方程為,再結合點到直線的距離公式求解即可;(2)先設存在,利用都有為常數及在圓上,列出等式,然后利用恒成立求解即可.【詳解】解:(1)由直線.則可設與直線l垂直的直線方程為,又該直線與圓相切,則,則,故所求直線方程為或;(2)假設存在定點使得對于圓C上任一點P,為常數,則,所以,將代入上式化簡整理得:對恒成立,所以,解得或,又,即,所以存在定點使得對于圓C上任一點P,為常數.【點睛】本題考查了點到直線的距離公式,重點考查了點與圓的位置關系,屬中檔題.18、(1)40,0.025,0.005(2)【解析】試題分析:(Ⅰ)由樣本容量和頻數頻率的關系易得答案;(Ⅱ)由題意可知,分數在[80,100)內的學生有6人,分數在[90,100]內的學生有2人,結合古典概型概率公式和對立事件概率公式可求得至少有一名成績在[90,100]內的概率試題解析:(1)由題意可知,樣本容量,,.……………6分(2)由題意,分數在內的有4人,分數在內的有2人,成績是分以上(含分)的學生共6人.從而抽取的名同學中得分在的學生人數的所有可能的取值為.,所以所求概率為考點:頻率分布直方圖;莖葉圖19、(1)(2)【解析】
(1)由題意知為銳角,利用二倍角余弦公式結合條件可計算出的值;(2)利用內角和定理以及誘導公式計算出,在中利用正弦定理可計算出.【詳解】(1),則B為銳角,;(2),在中,由,得.【點睛】本題考查二倍角余弦公式、以及利用正弦定理解三角形,解三角形有關問題時,要根據已知元素類型合理選擇正弦定理與余弦定理,考查計算能力,屬于中等題.20、(1),;(2).【解析】分析:(1)利用的關系,求解;倒序相加求。(2)先用錯位相減求,分離參數,使得對于一切的恒成立,轉化為求的最值。詳解:(1)時滿足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立對于一切的恒成立,即,令,則當且僅當時等號成立,故所以為所求.點睛:1、,一定要注意,當時要驗證是否滿足數列。2、等比乘等差結構的數列用錯位相減。3、數列中的恒成立問題與函數中的恒成立問題解法一致。21、(Ⅰ)見證明;(Ⅱ)見證明【解析】
(Ⅰ)由為菱形,得為中點,進而得到,利用線面平行的判定定理,即可求解;(Ⅱ)先利用線面垂直的判定定理,證得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能制造在新能源汽車中的應用試題及答案
- 河北會考英語試題及答案
- 小學教師教育教學反思的方法探討試題及答案
- 文字能力面試題及答案
- 數字與形狀點亮認知的題目題試題及答案
- 紅樓夢試題及答案
- 注冊土木工程師考試重要問題解析
- 小學教育中反思能力的提高策略試題及答案
- 考博歷史試題及答案
- 新能源汽車的國際研發動向分析試題及答案
- 高中英語-英語說課
- 聯想EAP案例分析
- 社會工作介入老年社區教育的探索
- 國開電大-工程數學(本)-工程數學第4次作業-形考答案
- 高考倒計時30天沖刺家長會課件
- 施工項目現金流預算管理培訓課件
- 時行疾病(中醫兒科學課件)
- 街道計生辦主任先進事跡材料-巾幗弄潮顯風流
- GB/T 32616-2016紡織品色牢度試驗試樣變色的儀器評級方法
- 部編版小學語文三年級下冊第七單元整體解讀《奇妙的世界》課件
- 管道支吊架培訓教材課件
評論
0/150
提交評論