




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省大同市平城區重點達標名校2024屆中考聯考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.兩個有理數的和為零,則這兩個數一定是()A.都是零 B.至少有一個是零C.一個是正數,一個是負數 D.互為相反數2.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.3.有若干個完全相同的小正方體堆成一個如圖所示幾何體,若現在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個數為()A.2 B.3 C.4 D.54.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)5.如圖,在△ABC中,EF∥BC,AB=3AE,若S四邊形BCFE=16,則S△ABC=()A.16 B.18 C.20 D.246.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km7.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發,沿B-C-D的路線向點D運動.設△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數關系的圖像大致為()A. B. C. D.8.某校在國學文化進校園活動中,隨機統計50名學生一周的課外閱讀時間如表所示,這組數據的眾數和中位數分別是()學生數(人)5814194時間(小時)678910A.14,9 B.9,9 C.9,8 D.8,99.甲、乙兩人參加射擊比賽,每人射擊五次,命中的環數如下表:次序第一次第二次第三次第四次第五次甲命中的環數(環)67868乙命中的環數(環)510767根據以上數據,下列說法正確的是()A.甲的平均成績大于乙 B.甲、乙成績的中位數不同C.甲、乙成績的眾數相同 D.甲的成績更穩定10.已知y關于x的函數圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<211.如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)12.“車輛隨機到達一個路口,遇到紅燈”這個事件是()A.不可能事件 B.不確定事件 C.確定事件 D.必然事件二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知,是關于x的一元二次方程x2+(2m+3)x+m2=0的兩個不相等的實數根,且滿足=﹣1,則m的值是____.14.64的立方根是_______.15.如果拋物線y=﹣x2+(m﹣1)x+3經過點(2,1),那么m的值為_____.16.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發,點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發開始到__________秒時,點P和點Q的距離是10cm.17.哈爾濱市某樓盤以每平方米10000元的均價對外銷售,經過連續兩次上調后,均價為每平方米12100元,則平均每次上調的百分率為_____.18.若關于x的方程x2-x+sinα=0有兩個相等的實數根,則銳角α的度數為___.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算﹣14﹣20.(6分)如圖所示,某校九年級(3)班的一個學習小組進行測量小山高度的實踐活動.部分同學在山腳A點處測得山腰上一點D的仰角為30°,并測得AD的長度為180米.另一部分同學在山頂B點處測得山腳A點的俯角為45°,山腰D點的俯角為60°,請你幫助他們計算出小山的高度BC.(計算過程和結果都不取近似值)21.(6分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區不斷推進“園林城市”建設,今春種植了四類花苗,園林部門從種植的這批花苗中隨機抽取了2000株,將四類花苗的種植株數繪制成扇形統計圖,將四類花苗的成活株數繪制成條形統圖.經統計這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據圖表中的信息解答下列問題:扇形統計圖中玉蘭所對的圓心角為,并補全條形統計圖;該區今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.22.(8分)為提高市民的環保意識,倡導“節能減排,綠色出行”,某市計劃在城區投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點投放在某市中心城區正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區全面鋪開.按照試點投放中A,B兩車型的數量比進行投放,且投資總價值不低于184萬元.請問城區10萬人口平均每100人至少享有A型車與B型車各多少輛?23.(8分)在平面直角坐標系中,拋物線y=(x﹣h)2+k的對稱軸是直線x=1.若拋物線與x軸交于原點,求k的值;當﹣1<x<0時,拋物線與x軸有且只有一個公共點,求k的取值范圍.24.(10分)咸寧市某中學為了解本校學生對新聞、體育、動畫、娛樂四類電視節目的喜愛情況,隨機抽取了部分學生進行問卷調查,根據調查結果繪制了如下圖所示的兩幅不完整統計圖,請你根據圖中信息解答下列問題:=1\*GB2⑴補全條形統計圖,“體育”對應扇形的圓心角是度;=2\*GB2⑵根據以上統計分析,估計該校名學生中喜愛“娛樂”的有人;=3\*GB2⑶在此次問卷調查中,甲、乙兩班分別有人喜愛新聞節目,若從這人中隨機抽取人去參加“新聞小記者”培訓,請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級的概率25.(10分)某生姜種植基地計劃種植A,B兩種生姜30畝.已知A,B兩種生姜的年產量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.(1)若該基地收獲兩種生姜的年總產量為68000千克,求A,B兩種生姜各種多少畝?(2)若要求種植A種生姜的畝數不少于B種的一半,那么種植A,B兩種生姜各多少畝時,全部收購該基地生姜的年總收入最多?最多是多少元?26.(12分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:四邊形BFDE是平行四邊形.27.(12分)已知頂點為A的拋物線y=a(x-)2-2經過點B(-,2),點C(,2).(1)求拋物線的表達式;(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN′,若點N′落在x軸上,請直接寫出Q點的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:互為相反數的兩個有理數的和為零,故選D.A、C不全面.B、不正確.2、A【解析】A.是軸對稱圖形不是中心對稱圖形,正確;B.是軸對稱圖形也是中心對稱圖形,錯誤;C.是中心對稱圖形不是軸對稱圖形,錯誤;D.是軸對稱圖形也是中心對稱圖形,錯誤,故選A.【點睛】本題考查軸對稱圖形與中心對稱圖形,正確地識別是解題的關鍵.3、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側正方體上添加1個,往第3排中間正方體上添加2個、右側兩個正方體上再添加1個,即一共添加4個小正方體,故選C.4、D【解析】分析:作BC⊥x軸于C,如圖,根據等邊三角形的性質得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據第二象限點的坐標特征可寫出B點坐標;由旋轉的性質得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉,得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉,等邊三角形的性質.求解時,注意等邊三角形三線合一的性質.5、B【解析】【分析】由EF∥BC,可證明△AEF∽△ABC,利用相似三角形的性質即可求出S△ABC的值.【詳解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,設S△AEF=x,∵S四邊形BCFE=16,∴,解得:x=2,∴S△ABC=18,故選B.【點睛】本題考查了相似三角形的判定與性質,熟練掌握相似三角形的面積比等于相似比的平方是解本題的關鍵.6、B【解析】
正負數的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點睛】本題考查正負數在生活中的應用.注意用正負數表示的量必須是具有相反意義的量.7、C【解析】
先分別求出點P從點B出發,沿B→C→D向終點D勻速運動時,當0<x≤2和2<x≤4時,y與x之間的函數關系式,即可得出函數的圖象.【詳解】由題意知,點P從點B出發,沿B→C→D向終點D勻速運動,則
當0<x≤2,y=x,
當2<x≤4,y=1,
由以上分析可知,這個分段函數的圖象是C.
故選C.8、C【解析】
解:觀察、分析表格中的數據可得:∵課外閱讀時間為1小時的人數最多為11人,∴眾數為1.∵將這組數據按照從小到大的順序排列,第25個和第26個數據的均為2,∴中位數為2.故選C.【點睛】本題考查(1)眾數是一組數據中出現次數最多的數;(2)中位數的確定要分兩種情況:①當數據組中數據的總個數為奇數時,把所有數據按從小到大的順序排列,中間的那個數就是中位數;②當數據組中數據的總個數為偶數時,把所有數據按從小到大的順序排列,中間的兩個數的平均數是這組數據的中位數.9、D【解析】
根據已知條件中的數據計算出甲、乙的方差,中位數和眾數后,再進行比較即可.【詳解】把甲命中的環數按大小順序排列為:6,6,7,8,8,故中位數為7;把乙命中的環數按大小順序排列為:5,6,7,7,10,故中位數為7;∴甲、乙成績的中位數相同,故選項B錯誤;根據表格中數據可知,甲的眾數是8環,乙的眾數是7環,∴甲、乙成績的眾數不同,故選項C錯誤;甲命中的環數的平均數為:x甲乙命中的環數的平均數為:x乙∴甲的平均數等于乙的平均數,故選項A錯誤;甲的方差S甲2=15[(6?7)2+(7?7)2+(8?7)2+(6?7)2乙的方差=15[(5?7)2+(10?7)2+(7?7)2+(6?7)2+(7?7)2因為2.8>0.8,所以甲的穩定性大,故選項D正確.故選D.【點睛】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.同時還考查了眾數的中位數的求法.10、B【解析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.11、B【解析】分析:根據題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,結合中點坐標公式即可求得點P1的坐標;同理可求得其它各點的坐標,分析可得規律,進而可得答案.詳解:根據題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,又∵A的坐標是(1,1),結合中點坐標公式可得P1的坐標是(1,0);同理P1的坐標是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據對稱關系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點P10的坐標為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點P1010的坐標是(1010,﹣1),故選:B.點睛:本題考查了對稱的性質,坐標與圖形的變化---旋轉,根據條件求出前邊幾個點的坐標,得到規律是解題關鍵.12、B【解析】
根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】“車輛隨機到達一個路口,遇到紅燈”是隨機事件.故選:.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的實際;不可能事件是指在一定條件下,一定不發生的事件;不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3.【解析】
可以先由韋達定理得出兩個關于、的式子,題目中的式子變形即可得出相應的與韋達定理相關的式子,即可求解.【詳解】得+=-2m-3,=m2,又因為,所以m2-2m-3=0,得m=3或m=-1,因為一元二次方程的兩個不相等的實數根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,綜上m=3.【點睛】本題考查了根與系數的關系,將根與系數的關系與代數式相結合解題是解決本題的關鍵.14、4.【解析】
根據立方根的定義即可求解.【詳解】∵43=64,∴64的立方根是4故答案為4【點睛】此題主要考查立方根的定義,解題的關鍵是熟知立方根的定義.15、2【解析】
把點(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經過點(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.【點睛】本題考查了二次函數圖象上點的坐標特征,解題的關鍵是找出二次函數圖象上的點的坐標滿足的關系式.16、或【解析】
作PH⊥CD,垂足為H,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設P,Q兩點從出發經過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發經過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質,勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關鍵.17、10%【解析】
設平均每次上調的百分率是x,因為經過兩次上調,且知道調前的價格和調后的價格,從而列方程求出解.【詳解】設平均每次上調的百分率是x,依題意得,解得:,(不合題意,舍去).答:平均每次上調的百分率為10%.故答案是:10%.【點睛】此題考查了一元二次方程的應用.解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程,再求解.18、30°【解析】試題解析:∵關于x的方程有兩個相等的實數根,∴解得:∴銳角α的度數為30°;故答案為30°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1【解析】
直接利用絕對值的性質以及二次根式的性質分別化簡得出答案.【詳解】原式=﹣1﹣4÷+27=﹣1﹣16+27=1.【點睛】本題考查了實數的運算,解題的關鍵是熟練掌握運算順序.20、米【解析】
解:如圖,過點D作DE⊥AC于點E,作DF⊥BC于點F,則有DE∥FC,DF∥EC.∵∠DEC=90°,∴四邊形DECF是矩形,∴DE=FC.∵∠HBA=∠BAC=45°,∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,∴△ADB是等腰三角形.∴AD=BD=180(米).在Rt△AED中,sin∠DAE=sin30°=,∴DE=180?sin30°=180×=90(米),∴FC=90米,在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=,∴BF=180?sin60°=180×(米).∴BC=BF+FC=90+90=90(+1)(米).答:小山的高度BC為90(+1)米.21、(1)72°,見解析;(2)7280;(3)16【解析】
(1)根據題意列式計算,補全條形統計圖即可;(2)根據題意列式計算即可;(3)畫樹狀圖得出所有等可能的情況數,找出選到成活率較高的兩類樹苗的情況數,即可求出所求的概率.【詳解】(1)扇形統計圖中玉蘭所對的圓心角為360°×(1-40%-15%-25%)=72°月季的株數為2000×90%-380-422-270=728(株),補全條形統計圖如圖所示:(2)月季的成活率為728所以月季成活株數為8000×91%=7280(株).故答案為:7280.(3)由題意知,成活率較高的兩類花苗是玉蘭和月季,玉蘭、月季、桂花、臘梅分別用A、B、C、D表示,畫樹狀圖如下:所有等可能的情況有12種,其中恰好選到成活率較高的兩類花苗有2種.∴P(恰好選到成活率較高的兩類花苗)=【點睛】此題主要考查了條形統計圖以及扇形統計圖的應用,根據統計圖得出正確信息是解題關鍵.22、(1)本次試點投放的A型車60輛、B型車40輛;(2)3輛;2輛【解析】分析:(1)設本次試點投放的A型車x輛、B型車y輛,根據“兩種款型的單車共100輛,總價值36800元”列方程組求解可得;(2)由(1)知A、B型車輛的數量比為3:2,據此設整個城區全面鋪開時投放的A型車3a輛、B型車2a輛,根據“投資總價值不低于184萬元”列出關于a的不等式,解之求得a的范圍,進一步求解可得.詳解:(1)設本次試點投放的A型車x輛、B型車y輛,根據題意,得:,解得:,答:本次試點投放的A型車60輛、B型車40輛;(2)由(1)知A、B型車輛的數量比為3:2,設整個城區全面鋪開時投放的A型車3a輛、B型車2a輛,根據題意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整個城區全面鋪開時投放的A型車至少3000輛、B型車至少2000輛,則城區10萬人口平均每100人至少享有A型車3000×=3輛、至少享有B型車2000×=2輛.點睛:本題主要考查二元一次方程組和一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的相等(或不等)關系,并據此列出方程組.23、(1)k=﹣1;(2)當﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【解析】
(1)由拋物線的對稱軸直線可得h,然后再由拋物線交于原點代入求出k即可;(2)先根據拋物線與x軸有公共點求出k的取值范圍,然后再根據拋物線的對稱軸及當﹣1<x<2時,拋物線與x軸有且只有一個公共點,進一步求出k的取值范圍即可.【詳解】解:(1)∵拋物線y=(x﹣h)2+k的對稱軸是直線x=1,∴h=1,把原點坐標代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵拋物線y=(x﹣1)2+k與x軸有公共點,∴對于方程(x﹣1)2+k=2,判別式b2﹣4ac=﹣4k≥2,∴k≤2.當x=﹣1時,y=4+k;當x=2時,y=1+k,∵拋物線的對稱軸為x=1,且當﹣1<x<2時,拋物線與x軸有且只有一個公共點,∴4+k>2且1+k<2,解得﹣4<k<﹣1,綜上,當﹣4<k<﹣1時,拋物線與x軸有且只有一個公共點.【點睛】拋物線與一元二次方程的綜合是本題的考點,熟練掌握拋物線的性質是解題的關鍵.24、(1)72;(2)700;(3).【解析】試題分析:(1)根據動畫類人數及其百分比求得總人數,總人數減去其他類型人數可得體育類人數,用360度乘以體育類人數所占比例即可得;(2)用樣本估計總體的思想解決問題;(3)根據題意先畫出樹狀圖,得出所有情況數,再根據概率公式即可得出答案.試題解析:(1)調查的學生總數為60÷30%=200(人),則體育類人數為200﹣(30+60+70)=40,補全條形圖如下:“體育”對應扇形的圓心角是360°×=72°;(2)估計該校2000名學生中喜愛“娛樂”的有:2000×=700(人),(3)將兩班報名的學生分別記為甲1、甲2、乙1、乙2,樹狀圖如圖所示:所以P(2名學生來自不同班)=.考點:扇形統計圖;條形統計圖;列表法與樹狀圖法;用樣本估計總體.25、(1)種植A種生姜14畝,種植B種生姜16畝;(2)種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【解析】試題分析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據:A種生姜的產量+B種生姜的產量=總產量,列方程求解;(2)設A種生姜x畝,根據A種生姜的畝數不少于B種的一半,列不等式求x的取值范圍,再根據(1)的等量關系列出函數關系式,在x的取值范圍內求總產量的最大值.試題解析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據題意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:種植A種生姜14畝,種植B種生姜16畝;(2)由題意得,x≥12設全部收購該基地生姜的年總收入為y元,則y=8×2000x+7×2500(30-x)=-1500x+525000,∵y隨x的增大而減小,∴當x=10時,y有最大值,此時,30-x=20,y的最大值為510000元,答:種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【點睛】本題考查了一次函數的應用.關鍵是根據總產量=A種生姜的產量+B種生姜的產量,列方程或函數關系式.26、證明見解析【解析】
∵四邊形ABCD是平行四邊形,∴AD//BC,AD=BC,∵A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版高中物理必修2《2.平拋運動》教學設計2
- 七年級數學下冊 第10章 軸對稱、平移與旋轉10.1 軸對稱 4設計軸對稱圖案教學設計 (新版)華東師大版
- 三年級品德與社會下冊 公共安全多提防教學設計 未來版
- 三年級品德與社會下冊 認識自然 2教學設計 冀教版
- 6.5 國家司法機關-八年級《道德與法治》下冊教學設計(統編版)
- 九年級化學上冊 1.1 物質的變化和性質教學設計 (新版)新人教版
- (重慶二診)重慶市高2025屆高三學業質量調研抽測 (第二次)語文試卷(含答案解析)
- 人教版二年級上冊數學教案設計第8課時 解決問題1
- 高鐵工程測量培訓
- 初中班主任培訓經驗分享
- 婦產科課件-早產臨床防治指南(2024)解讀
- 施工現場機械設備管理規定
- 高質量數字化轉型技術解決方案集(2024上半年度)
- 住房城鄉建設科學技術計劃項目科研開發類申報書
- 廣東省佛山市S6高質量發展聯盟2023-2024學年高一下學期4月期中考試數學
- 道路旅客運輸企業雙重預防機制建設指導手冊
- 智慧農業的支撐技術簡介
- 地下車庫等環氧地坪漆工程投標文件(技術標)
- 雨露計劃補助資金管理辦法
- XXX小學“三會一課”活動記錄
- 政務服務中心物業服務投標方案【新版】(技術方案)
評論
0/150
提交評論