




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省壽光市重點中學2024屆中考數學模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2?a3=a6D.5a+2b=7ab2.一個正比例函數的圖象過點(2,﹣3),它的表達式為()A. B. C. D.3.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.90° B.135° C.270° D.315°4.如圖,已知點A,B分別是反比例函數y=(x<0),y=(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣45.若點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,則m+n的值是()A.﹣5B.﹣3C.3D.16.如圖,的三邊的長分別為20,30,40,點O是三條角平分線的交點,則等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶57.下面調查方式中,合適的是()A.調查你所在班級同學的體重,采用抽樣調查方式B.調查烏金塘水庫的水質情況,采用抽樣調査的方式C.調查《CBA聯賽》欄目在我市的收視率,采用普查的方式D.要了解全市初中學生的業余愛好,采用普查的方式8.“保護水資源,節約用水”應成為每個公民的自覺行為.下表是某個小區隨機抽查到的10戶家庭的月用水情況,則下列關于這10戶家庭的月用水量說法錯誤的是()月用水量(噸)4569戶數(戶)3421A.中位數是5噸 B.眾數是5噸 C.極差是3噸 D.平均數是5.3噸9.如圖,將△ABC繞點C旋轉60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對10.如圖,矩形ABCD的邊AB=1,BE平分∠ABC,交AD于點E,若點E是AD的中點,以點B為圓心,BE長為半徑畫弧,交BC于點F,則圖中陰影部分的面積是()A.2- B. C.2- D.二、填空題(共7小題,每小題3分,滿分21分)11.四邊形ABCD中,向量_____________.12.如圖,AE是正八邊形ABCDEFGH的一條對角線,則∠BAE=°.13.拋物線y=3x2﹣6x+a與x軸只有一個公共點,則a的值為_____.14.如圖,⊙O的外切正六邊形ABCDEF的邊長為2,則圖中陰影部分的面積為_____.15.若正多邊形的一個內角等于120°,則這個正多邊形的邊數是_____.16.若數據2、3、5、3、8的眾數是a,則中位數是b,則a﹣b等于_____.17.分解因式:a2b?8ab+16b=_____.三、解答題(共7小題,滿分69分)18.(10分)計算:2﹣1+|﹣|++2cos30°19.(5分)如圖,已知∠AOB與點M、N求作一點P,使點P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)20.(8分)如圖,在直角坐標系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.求m、n的值;求直線AC的解析式.21.(10分)如圖,在平面直角坐標系中,已知△AOB是等邊三角形,點A的坐標是(0,4),點B在一象限,點P(t,0)是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉,使邊AO與AB重合,連接OD,PD,得△OPD。(1)當t=時,求DP的長(2)在點P運動過程中,依照條件所形成的△OPD面積為S①當t>0時,求S與t之間的函數關系式②當t≤0時,要使s=,請直接寫出所有符合條件的點P的坐標.22.(10分)如圖,M、N為山兩側的兩個村莊,為了兩村交通方便,根據國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.23.(12分)如圖,網格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉中心,分別畫出把順時針旋轉,后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設的三邊,,,請證明勾股定理.24.(14分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
A選項:利用同底數冪的除法法則,底數不變,只把指數相減即可;
B選項:利用平方差公式,應先把2a看成一個整體,應等于(2a)2-b2而不是2a2-b2,故本選項錯誤;
C選項:先把(-a)2化為a2,然后利用同底數冪的乘法法則,底數不變,只把指數相加,即可得到;
D選項:兩項不是同類項,故不能進行合并.【詳解】A選項:a6÷a2=a4,故本選項錯誤;
B選項:(2a+b)(2a-b)=4a2-b2,故本選項正確;
C選項:(-a)2?a3=a5,故本選項錯誤;
D選項:5a與2b不是同類項,不能合并,故本選項錯誤;
故選:B.【點睛】考查學生同底數冪的乘除法法則的運用以及對平方差公式的掌握,同時要求學生對同類項進行正確的判斷.2、A【解析】
利用待定系數法即可求解.【詳解】設函數的解析式是y=kx,根據題意得:2k=﹣3,解得:k=.∴函數的解析式是:.故選A.3、C【解析】
根據四邊形的內角和與直角三角形中兩個銳角關系即可求解.【詳解】解:∵四邊形的內角和為360°,直角三角形中兩個銳角和為90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故選:C.【點睛】此題主要考查角度的求解,解題的關鍵是熟知四邊形的內角和為360°.4、D【解析】
首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A,B分別在反比例函數y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據相似三角形面積的比等于相似比的平方,即可求出k的值【詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=,
∴=,
∴=,即,
解得k=±4,
又∵k<0,
∴k=-4,
故選:D.【點睛】此題考查了相似三角形的判定與性質、反比例函數的性質以及直角三角形的性質.解題時注意掌握數形結合思想的應用,注意掌握輔助線的作法。5、D【解析】【分析】根據關于y軸的對稱點的坐標特點:橫坐標互為相反數,縱坐標不變,據此求出m、n的值,代入計算可得.【詳解】∵點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故選D.【點睛】本題考查了關于y軸對稱的點,熟練掌握關于y軸對稱的兩點的橫坐標互為相反數,縱坐標不變是解題的關鍵.6、C【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根據角平分線的性質得到OD=OE=OF,根據三角形的面積公式計算即可.【詳解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三條角平分線交于點O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故選C.【點睛】考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.7、B【解析】
由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.【詳解】A、調查你所在班級同學的體重,采用普查,故A不符合題意;B、調查烏金塘水庫的水質情況,無法普查,采用抽樣調査的方式,故B符合題意;C、調查《CBA聯賽》欄目在我市的收視率,調查范圍廣適合抽樣調查,故C不符合題意;D、要了解全市初中學生的業余愛好,調查范圍廣適合抽樣調查,故D不符合題意;故選B.【點睛】本題考查了抽樣調查和全面調查的區別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.8、C【解析】
根據中位數、眾數、極差和平均數的概念,對選項一一分析,即可選擇正確答案.【詳解】解:A、中位數=(5+5)÷2=5(噸),正確,故選項錯誤;B、數據5噸出現4次,次數最多,所以5噸是眾數,正確,故選項錯誤;C、極差為9﹣4=5(噸),錯誤,故選項正確;D、平均數=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項錯誤.故選:C.【點睛】此題主要考查了平均數、中位數、眾數和極差的概念.要掌握這些基本概念才能熟練解題.9、D【解析】
從圖中可以看出,線段AB掃過的圖形面積為一個環形,環形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【詳解】陰影面積=π.
故選D.【點睛】本題的關鍵是理解出,線段AB掃過的圖形面積為一個環形.10、B【解析】
利用矩形的性質以及結合角平分線的性質分別求出AE,BE的長以及∠EBF的度數,進而利用圖中陰影部分的面積=S-S-S,求出答案.【詳解】∵矩形ABCD的邊AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵點E是AD的中點,∴AE=ED=1,∴圖中陰影部分的面積=S?S?S=1×2?×1×1?故選B.【點睛】此題考查矩形的性質,扇形面積的計算,解題關鍵在于掌握運算公式二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:根據“向量運算”的三角形法則進行計算即可.詳解:如下圖所示,由向量運算的三角形法則可得:==.故答案為.點睛:理解向量運算的三角形法則是正確解答本題的關鍵.12、67.1【解析】試題分析:∵圖中是正八邊形,∴各內角度數和=(8﹣2)×180°=1080°,∴∠HAB=1080°÷8=131°,∴∠BAE=131°÷2=67.1°.故答案為67.1.考點:多邊形的內角13、3【解析】
根據拋物線與x軸只有一個公共交點,則判別式等于0,據此即可求解.【詳解】∵拋物線y=3x2﹣6x+a與x軸只有一個公共點,∴判別式Δ=36-12a=0,解得:a=3,故答案為3【點睛】本題考查了二次函數圖象與x軸的公共點的個數的判定方法,如果△>0,則拋物線與x軸有兩個不同的交點;如果△=0,與x軸有一個交點;如果△<0,與x軸無交點.14、【解析】
由于六邊形ABCDEF是正六邊形,所以∠AOB=60°,故△OAB是等邊三角形,OA=OB=AB=2,設點G為AB與⊙O的切點,連接OG,則OG⊥AB,OG=OA?sin60°,再根據S陰影=S△OAB-S扇形OMN,進而可得出結論.【詳解】∵六邊形ABCDEF是正六邊形,
∴∠AOB=60°,
∴△OAB是等邊三角形,OA=OB=AB=2,
設點G為AB與⊙O的切點,連接OG,則OG⊥AB,
∴∴S陰影=S△OAB-S扇形OMN=故答案為【點睛】考查不規則圖形面積的計算,掌握扇形的面積公式是解題的關鍵.15、6【解析】試題分析:設所求正n邊形邊數為n,則120°n=(n﹣2)?180°,解得n=6;考點:多邊形內角與外角.16、2【解析】
將數據排序后,位置在最中間的數值。即將數據分成兩部分,一部分大于該數值,一部分小于該數值。中位數的位置:當樣本數為奇數時,中位數=(N+1)/2;當樣本數為偶數時,中位數為N/2與1+N/2的均值;眾數是在一組數據中,出現次數最多的數據。根據定義即可算出.【詳解】2、1、5、1、8中只有1出現兩次,其余都是1次,得眾數為a=1.2、1、5、1、8重新排列2、1、1、5、8,中間的數是1,中位數b=1.∴a﹣b=1-1=2.故答案為:2.【點睛】中位數與眾數的定義.17、b(a﹣4)1【解析】
先提公因式,再用完全平方公式進行因式分解.【詳解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【點睛】本題考查了提公因式與公式法的綜合運用,熟練運用公式法分解因式是本題的關鍵.三、解答題(共7小題,滿分69分)18、+4.【解析】
原式利用負整數指數冪法則,二次根式性質,以及特殊角的三角函數值計算即可求出值.【詳解】原式=++2+2×=+4.【點睛】本題考查了實數的運算,涉及了負整數指數冪、特殊角的三角函數值、二次根式的化簡等,熟練掌握各運算的運算法則是解本題的關鍵.19、見解析【解析】
作∠AOB的角平分線和線段MN的垂直平分線,它們的交點即是要求作的點P.【詳解】解:①作∠AOB的平分線OE,②作線段MN的垂直平分線GH,GH交OE于點P.點P即為所求.【點睛】本題考查了角平分線和線段垂直平分線的尺規作法,熟練掌握角平分線和線段垂直平分線的的作圖步驟是解答本題的關鍵.20、(1)m=-1,n=-1;(2)y=-x+【解析】
(1)由直線與雙曲線相交于A(-1,a)、B兩點可得B點橫坐標為1,點C的坐標為(1,0),再根據△AOC的面積為1可求得點A的坐標,從而求得結果;(2)設直線AC的解析式為y=kx+b,由圖象過點A(-1,1)、C(1,0)根據待定系數法即可求的結果.【詳解】(1)∵直線與雙曲線相交于A(-1,a)、B兩點,∴B點橫坐標為1,即C(1,0)∵△AOC的面積為1,∴A(-1,1)將A(-1,1)代入,可得m=-1,n=-1;(2)設直線AC的解析式為y=kx+b∵y=kx+b經過點A(-1,1)、C(1,0)∴解得k=-,b=.∴直線AC的解析式為y=-x+.【點睛】本題考查了一次函數與反比例函數圖象的交點問題,此類問題是初中數學的重點,在中考中極為常見,熟練掌握待定系數法是解題關鍵.21、(1)DP=;(2)①;②.【解析】
(1)先判斷出△ADP是等邊三角形,進而得出DP=AP,即可得出結論;
(2)①先求出GH=2,進而求出DG,再得出DH,即可得出結論;
②分兩種情況,利用三角形的面積建立方程求解即可得出結論.【詳解】解:(1)∵A(0,4),
∴OA=4,
∵P(t,0),
∴OP=t,
∵△ABD是由△AOP旋轉得到,
∴△ABD≌△AOP,
∴AP=AD,∠DAB=∠PAO,
∴∠DAP=∠BAO=60°,
∴△ADP是等邊三角形,
∴DP=AP,
∵,
∴,
∴;(2)①當t>0時,如圖1,BD=OP=t,
過點B,D分別作x軸的垂線,垂足于F,H,過點B作x軸的平行線,分別交y軸于點E,交DH于點G,
∵△OAB為等邊三角形,BE⊥y軸,
∴∠ABP=30°,AP=OP=2,
∵∠ABD=90°,
∴∠DBG=60°,
∴DG=BD?sin60°=,
∵GH=OE=2,
∴,
∴;②當t≤0時,分兩種情況:
∵點D在x軸上時,如圖2在Rt△ABD中,,
(1)當時,如圖3,BD=OP=-t,,∴,
∴,
∴或,
∴或,
(2)當時,如圖4,BD=OP=-t,,
∴,
∴∴或(舍)∴.【點睛】此題是幾何變換綜合題,主要考查了全等三角形的判定和性質,旋轉的性質,三角形的面積公式以及解直角三角形,正確作出輔助線是解決本題的關鍵.22、1.5千米【解析】
先根據相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性質解答即可【詳解】在△ABC與△AMN中,,,∴,∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得MN=1.5(千米),因此,M、N兩點之間的直線距離是1.5千米.【點睛】此題考查相似三角形的應用,解題關鍵在于掌握運算法則23、(1)見解析;(2)①正方形;②;③見解析.【解析】
(1)根據旋轉作圖的方法進行作圖即可;(2)①根據旋轉的性質可證AC=BC1=B1C2=B2C3,從而證出四邊形CC1C2C3是菱形,再根據有一個角是直角的菱形是正方形即可作出判斷,同理可判斷四邊形ABB1B2是正方形;②根據相似圖形的面積之比等相似比的平方即可得到結果;③用兩種不同的方法計算大正方形的面積化簡即可得到勾股定理.【詳解】(1)如圖,(2)①四邊形CC1C2C3和四邊形ABB1B2是正方形.理由如下:∵△ABC≌△BB1C1,∴AC=BC1,BC==B1C1,AB=BB1.再根據旋轉的性質可得:BC1=B1C2=B2C3,B2C1=B2C2=AC3,BB1=B1B2=AB2.∴CC1=C1C2=C2C3=CC3AB=BB1=B1B2=AB2∴四邊形CC1C2C3和四邊形ABB1B2是菱形.∵∠C=∠ABB1=90°,∴四邊形CC1C2C3和四邊形ABB1B2是正方形.②∵四邊形CC1C2C3和四邊形ABB1B2是正方形,∴四邊形CC1C2C3∽四邊形ABB1B2.∴=∵AB=,CC1=,∴==.③四邊形CC1C2C3的面積==,四邊形CC1C2C3的面積=4△ABC的面積+四邊形ABB1B2的面積=4+=∴=,化簡得:=.【點睛】本題考查了旋轉作圖和旋轉的性質,正方形的判定和性質,勾股定理,掌握相關知識是解題的關鍵.24、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關于m的解析式,再根據二次函數的性質可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據等腰三角形的性質求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國地理信息系統(GIS)行業市場發展分析及發展趨勢與投資前景研究報告
- 2025-2030中國團膳行業市場發展分析及前景趨勢與投資研究報告
- 2025-2030中國吸聲玻璃墻行業市場現狀供需分析及投資評估規劃分析研究報告
- 黑河市漠河市鄉鎮衛生院招聘考試真題2024
- 中外必讀名著:十本作者簡介作品簡介
- 新進語文老師培訓
- 品牌形象塑造與口碑關聯研究-全面剖析
- 智能合約與金融服務創新-全面剖析
- 監理工程師高頻真題題庫2024
- 金融服務行業風險質量保證措施
- 2025年科普知識競賽題及答案(共100題)
- 藥物過敏搶救流程
- 口腔保健科普講座(幼兒園)課件
- 2024-2025學年全國版圖知識競賽考試題庫資料(含答案)
- 2024年4月自考00155中級財務會計試題及答案
- 2022年江蘇對口單招市場營銷試卷剖析
- 【課件】第7課 西方古典美術的傳統與成就 課件高中美術魯美版美術鑒賞
- 同等學力工商管理綜合復習資料(全)
- 外科學教學課件:骨盆及髖臼骨折
- 關鍵過程(工序)和特殊過程(工序)管理辦法
- 慶陽市北部城區控制性詳細規劃—說明書
評論
0/150
提交評論