




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年廣東省惠州市惠城區達標名校中考聯考數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列運算結果是無理數的是()A.3× B. C. D.2.下列各數中,比﹣1大1的是()A.0B.1C.2D.﹣33.在數軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.4.在下列交通標志中,是中心對稱圖形的是()A. B.C. D.5.如圖是由四個小正方體疊成的一個幾何體,它的左視圖是()A. B. C. D.6.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點,P為弧BC上一動點(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.437.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′8.已知反比例函數y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣29.一元二次方程mx2+mx﹣=0有兩個相等實數根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.210.如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于()A.30° B.40°C.60° D.70°二、填空題(本大題共6個小題,每小題3分,共18分)11.如果點A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.12.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機摸出兩球,都是紅球的概率為_________.13.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)
14.如圖是矗立在高速公路水平地面上的交通警示牌,經測量得到如下數據:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_米.(結果精確到0.1米,參考數據:2≈1.41,3≈1.73)15.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.16.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.三、解答題(共8題,共72分)17.(8分)計算:÷+8×2﹣1﹣(+1)0+2?sin60°.18.(8分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結論.(2)設AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數為6的一個一元二次方程.19.(8分)某市旅游部門統計了今年“五?一”放假期間該市A、B、C、D四個旅游景區的旅游人數,并繪制出如圖所示的條形統計圖和扇形統計圖,根據圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個景點共接待游客的總人數;(2)扇形統計圖中景點A所對應的圓心角的度數是多少,請直接補全條形統計圖;(3)根據預測,明年“五?一”放假期間將有90萬游客選擇到該市的這四個景點旅游,請你估計有多少人會選擇去景點D旅游?20.(8分)均衡化驗收以來,樂陵每個學校都高樓林立,校園環境美如畫,軟件、硬件等設施齊全,小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發,向前走6米到達A處,測得樹頂端E的仰角為30°,他又繼續走下臺階到達C處,測得樹的頂端的仰角是60°,再繼續向前走到大樹底D處,測得食堂樓頂N的仰角為45°,已如A點離地面的高度AB=4米,∠BCA=30°,且B、C、D三點在同一直線上.(1)求樹DE的高度;(2)求食堂MN的高度.21.(8分)(1)如圖1,半徑為2的圓O內有一點P,切OP=1,弦AB過點P,則弦AB長度的最大值為__________;最小值為___________.圖①(2)如圖2,△ABC是葛叔叔家的菜地示意圖,其中∠ABC=90°,AB=80米,BC=60米,現在他利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長盡可能長的四邊形地,用來建魚塘.已知葛叔叔想建的魚塘是四邊形ABCD,且滿足∠ADC=60°,你認為葛叔叔的想法能實現嗎?若能,求出這個四邊形魚塘面積和周長的最大值;若不能,請說明理由.圖②22.(10分)我國古代數學著作《增刪算法統宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.23.(12分)如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.24.如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據二次根式的運算法則即可求出答案.【詳解】A選項:原式=3×2=6,故A不是無理數;B選項:原式=,故B是無理數;C選項:原式==6,故C不是無理數;D選項:原式==12,故D不是無理數故選B.【點睛】考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.2、A【解析】
用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【點睛】本題考查了有理數加法的運算,解題的關鍵是要熟練掌握:“先符號,后絕對值”.3、A【解析】根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得不等式解集,然后得出在數軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.4、C【解析】
解:A圖形不是中心對稱圖形;B不是中心對稱圖形;C是中心對稱圖形,也是軸對稱圖形;D是軸對稱圖形;不是中心對稱圖形故選C5、A【解析】試題分析:如圖是由四個小正方體疊成的一個幾何體,它的左視圖是.故選A.考點:簡單組合體的三視圖.6、D【解析】
如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點睛】本題考查了軸對稱-最短距離問題,相似三角形的判定和性質,勾股定理,正確的作出輔助線是解題的關鍵.7、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標應為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.8、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應的函數值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數的圖象位于第二象限內,且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數的圖象和性質”是正確解答本題的關鍵.9、C【解析】
由方程有兩個相等的實數根,得到根的判別式等于0,求出m的值,經檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數根;根的判別式的值等于0,方程有兩個相等的實數根;根的判別式的值小于0,方程沒有實數根.10、A【解析】
∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
根據函數值相等兩點關于對稱軸對稱,可得答案.【詳解】由點A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為:1.【點睛】本題考查了二次函數圖象上點的坐標特征,利用函數值相等兩點關于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關鍵.12、【解析】
先畫出樹狀圖,用隨意摸出兩個球是紅球的結果個數除以所有可能的結果個數即可.【詳解】∵從中隨意摸出兩個球的所有可能的結果個數是12,隨意摸出兩個球是紅球的結果個數是6,∴從中隨意摸出兩個球的概率=;故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.13、或【解析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉化,通過,與相似.這時,柳暗花明,迎刃而解.14、2.9【解析】試題分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考點:解直角三角形.15、50【解析】
由CD是⊙O的直徑,弦AB⊥CD,根據垂徑定理的即可求得
=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,
∴=,
∵∠BCD=25°=,
∴∠AOD=2∠BCD=50°,
故答案為50【點睛】本題考查角度的求解,解題的關鍵是利用垂徑定理.16、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.三、解答題(共8題,共72分)17、6+.【解析】
利用負整數指數冪、零指數冪的意義和特殊角的三角函數值進行計算.【詳解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.18、(1)D、E、F三點是同在一條直線上.(2)6x2﹣13x+6=1.【解析】(1)利用切線長定理及梅氏定理即可求證;(2)利用相似和韋達定理即可求解.解:(1)結論:D、E、F三點是同在一條直線上.證明:分別延長AD、BC交于點K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點共線,即D、E、F三點共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點共圓.設⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達定理可知:分別以、為兩根且二次項系數為6的一個一元二次方程是6x2﹣13x+6=1.點睛:本是一道關于圓的綜合題.正確分析圖形并應用圖形的性質是解題的關鍵.19、(1)60人;(2)144°,補全圖形見解析;(3)15萬人.【解析】
(1)用B景點人數除以其所占百分比可得;(2)用360°乘以A景點人數所占比例即可,根據各景點人數之和等于總人數求得C的人數即可補全條形圖;(3)用總人數乘以樣本中D景點人數所占比例【詳解】(1)今年“五?一”放假期間該市這四個景點共接待游客的總人數為18÷30%=60萬人;(2)扇形統計圖中景點A所對應的圓心角的度數是360°×=144°,C景點人數為60﹣(24+18+10)=8萬人,補全圖形如下:(3)估計選擇去景點D旅游的人數為90×=15(萬人).【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.20、(1)12米;(2)(2+8)米【解析】
(1)設DE=x,先證明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根據EF=8求出x的值得到答案;(2)延長NM交DB延長線于點P,先分別求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.【詳解】(1)如圖,設DE=x,∵AB=DF=4,∠ACB=30°,∴AC=8,∵∠ECD=60°,∴△ACE是直角三角形,∵AF∥BD,∴∠CAF=30°,∴∠CAE=60°,∠AEC=30°,∴AE=16,∴Rt△AEF中,EF=8,即x﹣4=8,解得x=12,∴樹DE的高度為12米;(2)延長NM交DB延長線于點P,則AM=BP=6,由(1)知CD=CE=×AC=4,BC=4,∴PD=BP+BC+CD=6+4+4=6+8,∵∠NDP=45°,且∠NPD=90°,∴NP=PD=6+8,∴NM=NP﹣MP=6+8﹣4=2+8,∴食堂MN的高度為(2+8)米.【點睛】此題是解直角三角形的實際應用,考查直角三角形的性質,30°角所對的直角邊等于斜邊的一半,銳角三角函數,將已知的線段及角放在相應的直角三角形中利用三角函數解題,由此做相應的輔助線是解題的關鍵.21、(1)弦AB長度的最大值為4,最小值為2;(2)面積最大值為(2500+2400)平方米,周長最大值為340米.【解析】
(1)當AB是過P點的直徑時,AB最長;當AB⊥OP時,AB最短,分別求出即可.(2)如圖在△ABC的一側以AC為邊做等邊三角形AEC,再做△AEC的外接圓,則滿足∠ADC=60°的點D在優弧AEC上(點D不與A、C重合),當D與E重合時,S△ADC最大值=S△AEC,由S△ABC為定值,故此時四邊形ABCD的面積最大,再根據勾股定理和等邊三角形的性質求出此時的面積與周長即可.【詳解】(1)(1)當AB是過P點的直徑時,AB最長=2×2=4;當AB⊥OP時,AB最短,AP=∴AB=2(2)如圖,在△ABC的一側以AC為邊做等邊三角形AEC,再做△AEC的外接圓,當D與E重合時,S△ADC最大故此時四邊形ABCD的面積最大,∵∠ABC=90°,AB=80,BC=60∴AC=∴周長為AB+BC+CD+AE=80+60+100+100=340(米)S△ADC=S△ABC=∴四邊形ABCD面積最大值為(2500+2400)平方米.【點睛】此題主要考查圓的綜合利用,解題的關鍵是熟知圓的性質定理與垂徑定理.22、繩索長為20尺,竿長為15尺.【解析】
設索長為x尺,竿子長為y尺,根據“索比竿子長一托,對折索子來量竿,卻比竿子短一托”,即可得出關于x、y的二元一次方程組,解之即可得出結論.【詳解】設繩索長、竿長分別為尺,尺,依題意得:解得:,.答:繩索長為20尺,竿長為15尺.【點睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.23、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)連接OE,AE,由AB是⊙O的直徑,得到∠AEB=∠AEC=90°,根據四邊形ABCD是平行四邊形,得到PA=PC推出∠OEP=∠OAC=90°,根據切線的判定定理即可得到結論;(2)由AB是⊙O的直徑,得到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學數學三 分數除法教案
- 水輪機發電站變壓器運行與管理考核試卷
- 煤炭市場結構優化與產業轉型升級路徑探索分析研究探討考核試卷
- 塑粉車間安全培訓
- 管道工程應急預案優化與實施策略思考探索考核試卷
- 玉米食品的國際市場拓展與貿易壁壘考核試卷
- 皮裝飾制品的時尚元素融入考核試卷
- 筆的檢測儀器與設備使用考核試卷
- 環境監測中的環境監測數據挖掘技術考核試卷
- 管道工程安全管理與保障措施考核試卷
- 港口道路與堆場施工規范
- 創意設計工作室合伙合同
- 居家托養合同范本
- 勞務班組施工合同范本(2024版)
- 人音版小學六年級下冊音樂教案
- 血透導管滑脫應急預案
- 肺栓塞的應急預案及流程
- 【年加工500噸鮑魚的綜合加工生產工藝設計10000字(論文)】
- (完整版)第19章支原體、衣原體、立克次氏體
- 家宴主題宴會設計說明
- 北京市海淀區2024年七年級下學期語文期中試卷(附答案)
評論
0/150
提交評論