




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省衡水市景縣重點名校2021-2022學年中考沖刺卷數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“預祝中考成功”,其中“預”的對面是“中”,“成”的對面是“功”,則它的平面展開圖可能是()A. B. C. D.2.用半徑為8的半圓圍成一個圓錐的側面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.83.﹣3的絕對值是()A.﹣3 B.3 C.- D.4.一、單選題在反比例函數的圖象中,陰影部分的面積不等于4的是()A. B. C. D.5.如圖,等邊△ABC內接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(
)A.
B.
C.
D.6.將拋物線y=A.y=-12C.y=-127.如圖,若銳角△ABC內接于⊙O,點D在⊙O外(與點C在AB同側),則∠C與∠D的大小關系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定8.將不等式組的解集在數軸上表示,下列表示中正確的是()A. B. C. D.9.如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點關于OE所在直線對稱D.O、E兩點關于CD所在直線對稱10.為了開展陽光體育活動,某班計劃購買毽子和跳繩兩種體育用品,共花費35元,毽子單價3元,跳繩單價5元,購買方案有()A.1種 B.2種 C.3種 D.4種11.下列運算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x412.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.函數的自變量的取值范圍是.14.數學綜合實踐課,老師要求同學們利用直徑為的圓形紙片剪出一個如圖所示的展開圖,再將它沿虛線折疊成一個無蓋的正方體形盒子(接縫處忽略不計).若要求折出的盒子體積最大,則正方體的棱長等于________.15.1017年11月7日,山西省人民政府批準發布的《山西省第一次全國地理國情普查公報》顯示,山西省國土面積約為156700km1,該數據用科學記數法表示為__________km1.16.如圖,某城市的電視塔AB坐落在湖邊,數學老師帶領學生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為______米(結果保留根號).17.把多項式3x2-12因式分解的結果是_____________.18.若關于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),當m=1、2、3、…、2018時,相應的一元二次方程的兩個根分別記為α1、β1,α2、β2,…,α2018、β2018,則:的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點D,過點D作DE⊥BC交AB延長線于點E,垂足為點F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長.20.(6分)某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數相同.求甲、乙兩種商品的每件進價;該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發現甲種商品銷量不好,商場決定:甲種商品銷售一定數量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?21.(6分)已如:⊙O與⊙O上的一點A(1)求作:⊙O的內接正六邊形ABCDEF;(要求:尺規作圖,不寫作法但保留作圖痕跡)(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.22.(8分)在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.23.(8分)如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.24.(10分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;(2)請畫出△ABC關于原點O成中心對稱的圖形△A2B2C2;(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.25.(10分)濟南國際滑雪自建成以來,吸引大批滑雪愛好者,一滑雪者從山坡滑下,測得滑行距離y(單位:m)與滑行時間x(單位:s)之間的關系可以近似的用二次函數來表示.滑行時間x/s0123…滑行距離y/m041224…(1)根據表中數據求出二次函數的表達式.現測量出滑雪者的出發點與終點的距離大約840m,他需要多少時間才能到達終點?將得到的二次函數圖象補充完整后,向左平移2個單位,再向下平移5個單位,求平移后的函數表達式.26.(12分)計算:4sin30°+(1﹣)0﹣|﹣2|+()﹣227.(12分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統計,制成了如下不完整的統計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據所給信息,解答以下問題:(1)在扇形統計圖中,C對應的扇形的圓心角是度;(2)補全條形統計圖;(3)所抽取學生的足球運球測試成績的中位數會落在等級;(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點對各選項分析判斷后利用排除法求解:【詳解】正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點對各選項分析判斷后利用排除法求解:A、“預”的對面是“考”,“祝”的對面是“成”,“中”的對面是“功”,故本選項錯誤;B、“預”的對面是“功”,“祝”的對面是“考”,“中”的對面是“成”,故本選項錯誤;C、“預”的對面是“中”,“祝”的對面是“考”,“成”的對面是“功”,故本選項正確;D、“預”的對面是“中”,“祝”的對面是“成”,“考”的對面是“功”,故本選項錯誤.故選C【點睛】考核知識點:正方體的表面展開圖.2、A【解析】
由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點睛】此題主要考查了圓錐側面展開扇形與底面圓之間的關系,圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關鍵是應用半圓的弧長=圓錐的底面周長.3、B【解析】
根據負數的絕對值是它的相反數,可得出答案.【詳解】根據絕對值的性質得:|-1|=1.故選B.【點睛】本題考查絕對值的性質,需要掌握非負數的絕對值是它本身,負數的絕對值是它的相反數.4、B【解析】
根據反比例函數中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經常考查的一個知識點;這里體現了數形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.5、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質、扇形面積公式是解題的關鍵.6、D【解析】
將拋物線y=12【詳解】由題意得,a=-12設旋轉180°以后的頂點為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉180°以后的頂點為(2,1),∴旋轉180°以后所得圖象的解析式為:y=-1故選D.【點睛】本題考查了二次函數圖象的旋轉變換,在繞拋物線某點旋轉180°以后,二次函數的開口大小沒有變化,方向相反;設旋轉前的的頂點為(x,y),旋轉中心為(a,b),由中心對稱的性質可知新頂點坐標為(2a-x,2b-y),從而可求出旋轉后的函數解析式.7、A【解析】
直接利用圓周角定理結合三角形的外角的性質即可得.【詳解】連接BE,如圖所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故選:A.【點睛】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關鍵.8、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數軸上即可.解:不等式可化為:,即.
∴在數軸上可表示為.故選B.“點睛”不等式組的解集在數軸上表示的方法:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.9、D【解析】試題分析:A、連接CE、DE,根據作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點關于OE所在直線對稱,正確,不符合題意.D、根據作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點關于CD所在直線不對稱,錯誤,符合題意.故選D.10、B【解析】
首先設毽子能買x個,跳繩能買y根,根據題意列方程即可,再根據二元一次方程求解.【詳解】解:設毽子能買x個,跳繩能買y根,根據題意可得:3x+5y=35,y=7-x,∵x、y都是正整數,∴x=5時,y=4;x=10時,y=1;∴購買方案有2種.故選B.【點睛】本題主要考查二元一次方程的應用,關鍵在于根據題意列方程.11、D【解析】A.x4+x4=2x4,故錯誤;B.(x2)3=x6,故錯誤;C.(x﹣y)2=x2﹣2xy+y2,故錯誤;D.x3?x=x4,正確,故選D.12、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≠1【解析】該題考查分式方程的有關概念根據分式的分母不為0可得X-1≠0,即x≠1那么函數y=的自變量的取值范圍是x≠114、【解析】
根據題意作圖,可得AB=6cm,設正方體的棱長為xcm,則AC=x,BC=3x,根據勾股定理對稱62=x2+(3x)2,解方程即可求得.【詳解】解:如圖示,根據題意可得AB=6cm,
設正方體的棱長為xcm,則AC=x,BC=3x,
根據勾股定理,AB2=AC2+BC2,即,
解得故答案為:.【點睛】本題考查了勾股定理的應用,正確理解題意是解題的關鍵.15、1.267×102【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值是易錯點,由于126700有6位,所以可以確定n=6﹣1=2.【詳解】解:126700=1.267×102.故答案為1.267×102.【點睛】此題考查科學記數法表示較大的數的方法,準確確定a與n值是關鍵.16、.【解析】解:如圖,連接AN,由題意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案為.點睛:此題是解直角三角形的應用﹣﹣﹣仰角和俯角,主要考查了垂直平分線的性質,等腰三角形的性質,解本題的關鍵是求出∠ANB=45°.17、3(x+2)(x-2)【解析】
因式分解時首先考慮提公因式,再考慮運用公式法;多項式3x2-12因式分解先提公因式3,再利用平方差公式因式分解.【詳解】3x2-12=3()=3.18、.【解析】
利用根與系數的關系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式變形,再代入,即可求出答案.【詳解】∵x2+2x-m2-m=0,m=1,2,3,…,2018,∴由根與系數的關系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式===2×()=2×(1-)=,故答案為.【點睛】本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析(2)8(3)【解析】分析:(1)連接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根據AO=OB知OD是△ABC的中位線,據此知OD∥BC,結合DE⊥BC即可得證;(2)設⊙O的半徑為x,則OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根據S陰影=S△ODE-S扇形ODB計算可得答案.(3)先證Rt△DFB∽Rt△DCB得,據此求得BF的長,再證△EFB∽△EDO得,據此求得EB的長,繼而由勾股定理可得答案.詳解:(1)如圖,連接BD、OD,∵AB是⊙O的直徑,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切線;(2)設⊙O的半徑為x,則OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB=,則S陰影=S△ODE-S扇形ODB=8-;(3)在Rt△ABD中,BD=ABsinA=10×=2,∵DE⊥BC,∴Rt△DFB∽Rt△DCB,∴,即,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴,即,∴EB=,∴EF=.點睛:本題主要考查圓的綜合問題,解題的關鍵是掌握圓的有關性質、中位線定理、三角函數的應用及相似三角形的判定與性質等知識點.20、甲種商品的每件進價為40元,乙種商品的每件進價為48元;甲種商品按原銷售單價至少銷售20件.【解析】【分析】設甲種商品的每件進價為x元,乙種商品的每件進價為(x+8))元根據“某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元購進的甲、乙兩種商品件數相同”列出方程進行求解即可;設甲種商品按原銷售單價銷售a件,則由“兩種商品全部售完后共獲利不少于2460元”列出不等式進行求解即可.【詳解】設甲種商品的每件進價為x元,則乙種商品的每件進價為元,根據題意得,,解得,經檢驗,是原方程的解,答:甲種商品的每件進價為40元,乙種商品的每件進價為48元;甲乙兩種商品的銷售量為,設甲種商品按原銷售單價銷售a件,則,解得,答:甲種商品按原銷售單價至少銷售20件.【點睛】本題考查了分式方程的應用,一元一次不等式的應用,弄清題意,找出等量關系列出方程,找出不等關系列出不等式是解題的關鍵.21、(1)答案見解析;(2)證明見解析.【解析】
(1)如圖,在⊙O上依次截取六段弦,使它們都等于OA,從而得到正六邊形ABCDEF;(2)連接BE,如圖,利用正六邊形的性質得AB=BC=CD=DE=EF=FA,,則判斷BE為直徑,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判斷四邊形BCEF為矩形.【詳解】解:(1)如圖,正六邊形ABCDEF為所作;(2)四邊形BCEF為矩形.理由如下:連接BE,如圖,∵六邊形ABCDEF為正六邊形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE為直徑,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四邊形BCEF為矩形.【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了矩形的判定與正六邊形的性質.22、(1)證明見解析;(2)當∠CAB=60°時,四邊形ADFE為菱形;證明見解析;【解析】分析(1)首先利用平行線的性質得到∠FAB=∠CAB,然后利用SAS證得兩三角形全等,得出對應角相等即可;(2)當∠CAB=60°時,四邊形ADFE為菱形,根據∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進行判斷四邊形ADFE是菱形.詳解:(1)證明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA=∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF是⊙A的切線.(2)當∠CAB=60°時,四邊形ADFE為菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等邊三角形∴AE=EF,∵AE=AD∴EF=AD∴四邊形ADFE是平行四邊形∵AE=EF∴平行四邊形ADFE為菱形.點睛:本題考查了菱形的判定、全等三角形的判定與性質及圓周角定理的知識,解題的關鍵是了解菱形的判定方法及全等三角形的判定方法,難度不大.23、(1)(2)作圖見解析;(3).【解析】
(1)利用平移的性質畫圖,即對應點都移動相同的距離.(2)利用旋轉的性質畫圖,對應點都旋轉相同的角度.(3)利用勾股定理和弧長公式求點B經過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網格問題;2.作圖(平移和旋轉變換);3.勾股定理;4.弧長的計算.24、(1)詳見解析;(2)詳見解析;(3)圖見解析,點P坐標為(2,0).【解析】
(1)根據網格結構找出點A、B、C平移后的對應點的位置,然后順次連接即可;(2))找出點A、B、C關于原點O的對稱點的位置,然后順次連接即可;(3)找出A的對稱點A′,連接BA′,與x軸交點即為P.【詳解】(1)如圖1所示,△A1B1C1,即為所求:(2)如圖2所示,△A2B2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務派遣公司代繳社保流程
- 新型冰箱培訓課件
- 12《家庭的記憶》 教學設計-2023-2024學年道德與法治三年級上冊統編版
- 3 表內乘法(一)(教學設計)-2024-2025學年二年級上冊數學 蘇教版
- 2024八年級英語下冊 Unit 2 Plant a Plant(Review)教學設計(新版)冀教版
- Module3 Unit2 Sam ate four hamburgers(教學設計)-2023-2024學年外研版(三起)五年級下冊
- 《平行與垂直》教學設計- 2024-2025學年人教版數學四年級上冊
- 22《伯牙鼓琴》教學設計-2024-2025學年六年級上冊語文統編版
- 養老金融服務升級路徑與實施策略
- 初中數學人教版七年級上冊1.2.1 有理數教學設計
- 探究中醫藥知識圖譜-洞察分析
- 六年級工程問題30道應用題
- 08D800-6 民用建筑電氣設計與施工-室內布線
- 2024年廣西高考生物試卷真題(含答案)
- 2024年資格考試-良好農業規范認證檢查員考試近5年真題附答案
- 2024-2025學年小學科學六年級下冊湘科版(2024)教學設計合集
- 建筑施工安全檢查標準JGJ59-2011
- 職業生涯人物訪談報告
- 幼兒園 小班健康《漢堡男孩》
- 2023年江西省贛州市尋烏縣殘聯公務員考試《行政職業能力測驗》歷年真題及詳解
- 2023年上海市虹口區街道社區工作者招聘考試真題及答案
評論
0/150
提交評論