




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
淮安市重點中學2021-2022學年中考數學考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標系中,以O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數量關系為()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=12.內角和為540°的多邊形是()A. B. C. D.3.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統計量不會發生改變的是()年齡/歲13141516頻數515x10-xA.平均數、中位數 B.眾數、方差 C.平均數、方差 D.眾數、中位數4.甲車行駛30千米與乙車行駛40千米所用時間相同,已知乙車每小時比甲車多行駛15千米,設甲車的速度為千米/小時,依據題意列方程正確的是()A. B. C. D.5.如圖,半徑為3的⊙A經過原點O和點C(0,2),B是y軸左側⊙A優弧上一點,則tan∠OBC為()A. B.2 C. D.6.已知是一個單位向量,、是非零向量,那么下列等式正確的是()A. B. C. D.7.數據4,8,4,6,3的眾數和平均數分別是()A.5,4 B.8,5 C.6,5 D.4,58.某大學生利用課余時間在網上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數關系式為y=–4x+440,要獲得最大利潤,該商品的售價應定為A.60元B.70元C.80元D.90元9.我國古代數學著作《增刪算法統宗》記載”繩索量竿”問題:“一條竿子一條索,索比竿子長一托.折回索子卻量竿,卻比竿子短一托“其大意為:現有一根竿和一條繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.設繩索長x尺,竿長y尺,則符合題意的方程組是()A. B. C. D.10.統計學校排球隊員的年齡,發現有12、13、14、15等四種年齡,統計結果如下表:年齡(歲)12131415人數(個)2468根據表中信息可以判斷該排球隊員年齡的平均數、眾數、中位數分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知雙曲線經過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(-6,4),則△AOC的面積為.12.若向北走5km記作﹣5km,則+10km的含義是_____.13.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.14.如圖,P為正方形ABCD內一點,PA:PB:PC=1:2:3,則∠APB=_____________.15.拋物線(為非零實數)的頂點坐標為_____________.16.在平面直角坐標系xOy中,點A(4,3)為⊙O上一點,B為⊙O內一點,請寫出一個符合條件要求的點B的坐標______.三、解答題(共8題,共72分)17.(8分)我市某企業接到一批產品的生產任務,按要求必須在14天內完成.已知每件產品的出廠價為60元.工人甲第x天生產的產品數量為y件,y與x滿足如下關系:工人甲第幾天生產的產品數量為70件?設第x天生產的產品成本為P元/件,P與的函數圖象如圖.工人甲第x天創造的利潤為W元,求W與x的函數關系式,并求出第幾天時利潤最大,最大利潤是多少?18.(8分)如圖,點A的坐標為(﹣4,0),點B的坐標為(0,﹣2),把點A繞點B順時針旋轉90°得到的點C恰好在拋物線y=ax2上,點P是拋物線y=ax2上的一個動點(不與點O重合),把點P向下平移2個單位得到動點Q,則:(1)直接寫出AB所在直線的解析式、點C的坐標、a的值;(2)連接OP、AQ,當OP+AQ獲得最小值時,求這個最小值及此時點P的坐標;(3)是否存在這樣的點P,使得∠QPO=∠OBC,若不存在,請說明理由;若存在,請你直接寫出此時P點的坐標.19.(8分)如圖,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求證:AC=AE+BC.20.(8分)如圖,是5×5正方形網格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.(1)在圖(1)中畫出一個等腰△ABE,使其面積為3.5;(2)在圖(2)中畫出一個直角△CDF,使其面積為5,并直接寫出DF的長.21.(8分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.22.(10分)如圖,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺規作圖法,保留作圖痕跡,不要求寫作法).(2)在(1)條件下,求證:AB2=BD?BC.23.(12分)如圖,內接于,,的延長線交于點.(1)求證:平分;(2)若,,求和的長.24.新春佳節,電子鞭炮因其安全、無污染開始走俏.某商店經銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調查發現,該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.(1)求w與x之間的函數關系式;(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想賣得快.那么銷售單價應定為多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:根據作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.2、C【解析】試題分析:設它是n邊形,根據題意得,(n﹣2)?180°=140°,解得n=1.故選C.考點:多邊形內角與外角.3、D【解析】
由表易得x+(10-x)=10,所以總人數不變,14歲的人最多,眾數不變,中位數也可以確定.【詳解】∵年齡為15歲和16歲的同學人數之和為:x+(10-x)=10,∴由表中數據可知人數最多的是年齡為14歲的,共有15人,合唱團總人數為30人,∴合唱團成員的年齡的中位數是14,眾數也是14,這兩個統計量不會隨著x的變化而變化.故選D.4、C【解析】由實際問題抽象出方程(行程問題).【分析】∵甲車的速度為千米/小時,則乙甲車的速度為千米/小時∴甲車行駛30千米的時間為,乙車行駛40千米的時間為,∴根據甲車行駛30千米與乙車行駛40千米所用時間相同得.故選C.5、C【解析】試題分析:連結CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點:圓周角定理;銳角三角函數的定義.6、B【解析】
長度不為0的向量叫做非零向量,向量包括長度及方向,而長度等于1個單位長度的向量叫做單位向量,注意單位向量只規定大小沒規定方向,則可分析求解.【詳解】A.由于單位向量只限制長度,不確定方向,故錯誤;B.符合向量的長度及方向,正確;C.得出的是a的方向不是單位向量,故錯誤;D.左邊得出的是a的方向,右邊得出的是b的方向,兩者方向不一定相同,故錯誤.故答案選B.【點睛】本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.7、D【解析】
根據眾數的定義找出出現次數最多的數,再根據平均數的計算公式求出平均數即可【詳解】∵4出現了2次,出現的次數最多,∴眾數是4;這組數據的平均數是:(4+8+4+6+3)÷5=5;故選D.8、C【解析】設銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.9、A【解析】
設索長為x尺,竿子長為y尺,根據“索比竿子長一托,折回索子卻量竿,卻比竿子短一托”,即可得出關于x、y的二元一次方程組.【詳解】設索長為x尺,竿子長為y尺,根據題意得:.故選A.【點睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.10、B【解析】
根據加權平均數、眾數、中位數的計算方法求解即可.【詳解】,15出現了8次,出現的次數最多,故眾數是15,從小到大排列后,排在10、11兩個位置的數是14,14,故中位數是14.故選B.【點睛】本題考查了平均數、眾數與中位數的意義.數據x1、x2、……、xn的加權平均數:(其中w1、w2、……、wn分別為x1、x2、……、xn的權數).一組數據中出現次數最多的數據叫做眾數.中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(或最中間兩個數的平均數),叫做這組數據的中位數.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】解:∵OA的中點是D,點A的坐標為(﹣6,4),∴D(﹣1,2),∵雙曲線y=經過點D,∴k=﹣1×2=﹣6,∴△BOC的面積=|k|=1.又∵△AOB的面積=×6×4=12,∴△AOC的面積=△AOB的面積﹣△BOC的面積=12﹣1=2.12、向南走10km【解析】
分析:與北相反的方向是南,由題意,負數表示向北走,則正數就表示向南走,據此得出結論.詳解:∵向北走5km記作﹣5km,∴+10km表示向南走10km.故答案是:向南走10km.點睛:本題考查對相反意義量的認識:在一對具有相反意義的量中,先規定一個為正數,則另一個就要用負數表示.13、1【解析】試題分析:由m與n為已知方程的解,利用根與系數的關系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點:根與系數的關系.14、°【解析】
通過旋轉,把PA、PB、PC或關聯的線段集中到同一個三角形,再根據兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點順時針旋轉90°,得△P′BC,則△PAB≌△P′BC,設PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點睛】本題考查的是正方形四邊相等的性質,考查直角三角形中勾股定理的運用,把△PAB順時針旋轉90°使得A′與C點重合是解題的關鍵.15、【解析】【分析】將拋物線的解析式由一般式化為頂點式,即可得到頂點坐標.【詳解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2+1-m,所以拋物線的頂點坐標為(-1,1-m),故答案為(-1,1-m).【點睛】本題考查了拋物線的頂點坐標,把拋物線的解析式轉化為頂點式是解題的關鍵.16、(2,2).【解析】
連結OA,根據勾股定理可求OA,再根據點與圓的位置關系可得一個符合要求的點B的坐標.【詳解】如圖,連結OA,OA==5,∵B為⊙O內一點,∴符合要求的點B的坐標(2,2)答案不唯一.故答案為:(2,2).【點睛】考查了點與圓的位置關系,坐標與圖形性質,關鍵是根據勾股定理得到OA的長.三、解答題(共8題,共72分)17、(1)工人甲第12天生產的產品數量為70件;(2)第11天時,利潤最大,最大利潤是845元.【解析】分析:(1)根據y=70求得x即可;(2)先根據函數圖象求得P關于x的函數解析式,再結合x的范圍分類討論,根據“總利潤=單件利潤×銷售量”列出函數解析式,由二次函數的性質求得最值即可.本題解析:解:(1)若7.5x=70,得x=>4,不符合題意;則5x+10=70,解得x=12.答:工人甲第12天生產的產品數量為70件.(2)由函數圖象知,當0≤x≤4時,P=40,當4<x≤14時,設P=kx+b,將(4,40)、(14,50)代入,得解得∴P=x+36.①當0≤x≤4時,W=(60-40)·7.5x=150x,∵W隨x的增大而增大,∴當x=4時,W最大=600;②當4<x≤14時,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴當x=11時,W最大=845.∵845>600,∴當x=11時,W取得最大值845元.答:第11天時,利潤最大,最大利潤是845元.點睛:本題考查了一次函數的應用、二次函數的應用,解題的關鍵是理解題意,記住利潤=出廠價-成本,學會利用函數的性質解決最值問題.18、(1)a=;(2)OP+AQ的最小值為2,此時點P的坐標為(﹣1,);(3)P(﹣4,8)或(4,8),【解析】
(1)利用待定系數法求出直線AB解析式,根據旋轉性質確定出C的坐標,代入二次函數解析式求出a的值即可;(2)連接BQ,可得PQ與OB平行,而PQ=OB,得到四邊形PQBO為平行四邊形,當Q在線段AB上時,求出OP+AQ的最小值,并求出此時P的坐標即可;(3)存在這樣的點P,使得∠QPO=∠OBC,如備用圖所示,延長PQ交x軸于點H,設此時點P的坐標為(m,m2),根據正切函數定義確定出m的值,即可確定出P的坐標.【詳解】解:(1)設直線AB解析式為y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:,解得:,∴直線AB的解析式為y=﹣x﹣2,根據題意得:點C的坐標為(2,2),把C(2,2)代入二次函數解析式得:a=;(2)連接BQ,則易得PQ∥OB,且PQ=OB,∴四邊形PQBO是平行四邊形,∴OP=BQ,∴OP+AQ=BQ+AQ≥AB=2,(等號成立的條件是點Q在線段AB上),∵直線AB的解析式為y=﹣x﹣2,∴可設此時點Q的坐標為(t,﹣t﹣2),于是,此時點P的坐標為(t,﹣t),∵點P在拋物線y=x2上,∴﹣t=t2,解得:t=0或t=﹣1,∴當t=0,點P與點O重合,不合題意,應舍去,∴OP+AQ的最小值為2,此時點P的坐標為(﹣1,);(3)P(﹣4,8)或(4,8),如備用圖所示,延長PQ交x軸于點H,設此時點P的坐標為(m,m2),則tan∠HPO=,又,易得tan∠OBC=,當tan∠HPO=tan∠OBC時,可使得∠QPO=∠OBC,于是,得,解得:m=±4,所以P(﹣4,8)或(4,8).【點睛】此題屬于二次函數綜合題,涉及的知識有:二次函數的圖象與性質,待定系數法求一次函數解析式,旋轉的性質,以及銳角三角函數定義,熟練掌握各自的性質是解本題的關鍵.19、見解析.【解析】
由“SAS”可證△ABC≌△DEC,可得BC=CE,即可得結論.【詳解】證明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°∴△ABC≌△DEC(SAS)∴BC=CE,∵AC=AE+CE∴AC=AE+BC【點睛】本題考查了全等三角形的判定和性質,熟練運用全等三角形的性質是本題的關鍵.20、(1)見解析;(2)DF=【解析】
(1)直接利用等腰三角形的定義結合勾股定理得出答案;(2)利用直角三角的定義結合勾股定理得出符合題意的答案.【詳解】(1)如圖(1)所示:△ABE,即為所求;(2)如圖(2)所示:△CDF即為所求,DF=.【點睛】此題主要考查了等腰三角形的定義以及三角形面積求法,正確應用網格分析是解題關鍵.21、(1)見解析;(2)【解析】
(1)根據矩形的性質可得AB=CD,∠C=∠A=90°,再根據折疊的性質可得DE=CD,∠C=∠E=90°,然后利用“角角邊”證明即可;
(2)設AF=x,則BF=DF=8-x,根據勾股定理列方程求解即可.【詳解】(1)證明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折疊得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,設AF=x,則BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣x)2=x2+62,x=,即AF=【點睛】本題考查了翻折變換的性質,全等三角形的判定與性質,矩形的性質,勾股定理,翻折前后對應邊相等,對應角相等,利用勾股定理列出方程是解題的關鍵.22、(1)作圖見解析;(2)證明見解析;【解析】
(1)①以C為圓心,任意長為半徑畫弧,交CB、CA于E、F;②以A為圓心,CE長為半徑畫弧,交AB于G;③以G為圓心,EF長為半徑畫弧,兩弧交于H;④連接AH并延長交BC于D,則∠BAD=∠C;(2)證明△ABD∽△CBA,然后根據相似三角形的性質得到結論.【詳解】(1)如圖,∠BAD為所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD?BC.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了相似三角形的判定與性質.23、(1)證明見解析;(2)AC=,CD=,【解析】分析:(1)延長AO交BC于H,連接BO,證明A、O在線段BC的垂直平分線上,得出AO⊥BC,再由等腰三角形的性質即可得出結論;(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑,由圓周角定理得出∠EBC=90°,∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具小門店轉讓合同協議
- 智商書單測試題及答案
- 護理領域質控要求與考核試題及答案
- 刑警內勤考試題及答案
- 光電工程師考試提升信心的試題及答案
- 2025年鄉村助理醫師考試公共衛生危機應對試題及答案
- 人類語音測試題及答案
- 臨床能力驗證的試題及答案
- 2024年衛生管理考試綜合分析試題及答案
- 提高光電工程師考試現場應變能力試題及答案
- 科學防癌預防先行
- 3.4蛋白質工程的原理和應用課件高二下學期生物人教版選擇性必修3
- 提點合同模板
- 企業安全生產責任制管理制度模版(三篇)
- 新版GSP認證標準
- 反詐宣傳民警在社區活動上的發言稿
- 2024年安全崗位競聘演講稿(4篇)
- 甘肅省2025屆高三高考診斷(一診)政治試卷(含答案解析)
- 品管圈PDCA案例-中醫醫院減少住院患者艾灸燙傷率醫院改善成果匯報
- 弦理探索-洞察分析
- 工務安全生產管理系統運用
評論
0/150
提交評論