




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆陜西省安康市達標名校中考一模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個多邊形的邊數由原來的3增加到n時(n>3,且n為正整數),它的外角和()A.增加(n﹣2)×180° B.減小(n﹣2)×180°C.增加(n﹣1)×180° D.沒有改變2.如圖,點E在△DBC的邊DB上,點A在△DBC內部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④3.小亮家與姥姥家相距24km,小亮8:00從家出發,騎自行車去姥姥家.媽媽8:30從家出發,乘車沿相同路線去姥姥家.在同一直角坐標系中,小亮和媽媽的行進路程s(km)與時間t(h)的函數圖象如圖所示.根據圖象得出下列結論,其中錯誤的是()A.小亮騎自行車的平均速度是12km/hB.媽媽比小亮提前0.5h到達姥姥家C.媽媽在距家12km處追上小亮D.9:30媽媽追上小亮4.民族圖案是數學文化中的一塊瑰寶.下列圖案中,既不是中心對稱圖形也不是軸對稱圖形的是()
A. B. C. D.5.﹣6的倒數是()A.﹣16 B.16.如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變7.化簡÷的結果是()A. B. C. D.2(x+1)8.如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=49.二次函數y=ax2+bx+c(a≠0)和正比例函數y=﹣x的圖象如圖所示,則方程ax2+(b+)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定10.在一次男子馬拉松長跑比賽中,隨機抽取了10名選手,記錄他們的成績(所用的時間)如下:選手12345678910時間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數據的平均數超過130B.這組樣本數據的中位數是147C.在這次比賽中,估計成績為130min的選手的成績會比平均成績差D.在這次比賽中,估計成績為142min的選手,會比一半以上的選手成績要好二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內部.將AF延長交邊BC于點G.若,則(用含k的代數式表示).12.一般地,當α、β為任意角時,sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα?cosβ+cosα?sinβ;sin(α﹣β)=sinα?cosβ﹣cosα?sinβ.例如sin90°=sin(60°+30°)=sin60°?cos30°+cos60°?sin30°==1.類似地,可以求得sin15°的值是_______.13.如圖,從直徑為4cm的圓形紙片中,剪出一個圓心角為90°的扇形OAB,且點O、A、B在圓周上,把它圍成一個圓錐,則圓錐的底面圓的半徑是_____cm.14.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統計圖,根據該統計圖可算得該花店銷售花卉的平均單價為_____元.15.21世紀納米技術將被廣泛應用.納米是長度的度量單位,1納米=0.000000001米,則12納米用科學記數法表示為_______米.16.若關于x的方程x2-mx+m=0有兩個相等實數根,則代數式2m2-8m+3的值為__________.17.如圖,在△ABC中,AB=AC=10cm,F為AB上一點,AF=2,點E從點A出發,沿AC方向以2cm/s的速度勻速運動,同時點D由點B出發,沿BA方向以lcm/s的速度運動,設運動時間為t(s)(0<t<5),連D交CF于點G.若CG=2FG,則t的值為_____.三、解答題(共7小題,滿分69分)18.(10分)反比例函數的圖象經過點A(2,3).(1)求這個函數的解析式;(2)請判斷點B(1,6)是否在這個反比例函數的圖象上,并說明理由.19.(5分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.20.(8分)讀詩詞解題:(通過列方程式,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數人物;而立之年督東吳,早逝英年兩位數;十位恰小個位三,個位平方與壽符;哪位學子算得快,多少年華屬周瑜?21.(10分)如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.22.(10分)如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.求證:△ABM∽△EFA;若AB=12,BM=5,求DE的長.23.(12分)“食品安全”受到全社會的廣泛關注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖.請你根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為;(2)請補全條形統計圖;(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數;(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.24.(14分)解不等式:﹣≤1
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據多邊形的外角和等于360°,與邊數無關即可解答.【詳解】∵多邊形的外角和等于360°,與邊數無關,∴一個多邊形的邊數由3增加到n時,其外角度數的和還是360°,保持不變.故選D.【點睛】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關鍵.2、A【解析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點睛:本題考查全等三角形的判定和性質、勾股定理、等腰直角三角形的性質等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考選擇題中的壓軸題.3、D【解析】
根據函數圖象可知根據函數圖象小亮去姥姥家所用時間為10﹣8=2小時,進而得到小亮騎自行車的平均速度,對應函數圖象,得到媽媽到姥姥家所用的時間,根據交點坐標確定媽媽追上小亮所用時間,即可解答.【詳解】解:A、根據函數圖象小亮去姥姥家所用時間為10﹣8=2小時,∴小亮騎自行車的平均速度為:24÷2=12(km/h),故正確;B、由圖象可得,媽媽到姥姥家對應的時間t=9.5,小亮到姥姥家對應的時間t=10,10﹣9.5=0.5(小時),∴媽媽比小亮提前0.5小時到達姥姥家,故正確;C、由圖象可知,當t=9時,媽媽追上小亮,此時小亮離家的時間為9﹣8=1小時,∴小亮走的路程為:1×12=12km,∴媽媽在距家12km出追上小亮,故正確;D、由圖象可知,當t=9時,媽媽追上小亮,故錯誤;故選D.【點睛】本題考查函數圖像的應用,從圖像中讀取關鍵信息是解題的關鍵.4、C【解析】分析:根據軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.因此,A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,也不是中心對稱圖形,故本選項正確;D、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤.故選C.5、A【解析】解:﹣6的倒數是﹣166、A【解析】
分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【詳解】將正方體①移走前的主視圖為:第一層有一個正方形,第二層有四個正方形,正方體①移走后的主視圖為:第一層有一個正方形,第二層有四個正方形,沒有改變。將正方體①移走前的左視圖為:第一層有一個正方形,第二層有兩個正方形,正方體①移走后的左視圖為:第一層有一個正方形,第二層有兩個正方形,沒有發生改變。將正方體①移走前的俯視圖為:第一層有四個正方形,第二層有兩個正方形,正方體①移走后的俯視圖為:第一層有四個正方形,第二層有兩個正方形,發生改變。故選A.【點睛】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數以及每列正方形的個數是解決本題的關鍵.7、A【解析】
原式利用除法法則變形,約分即可得到結果.【詳解】原式=?(x﹣1)=.故選A.【點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.8、D【解析】
由△OAB繞O點逆時針旋轉60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;
則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.
故選D.【點睛】本題考查旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等及等邊三角形的判定和性質.9、C【解析】
設的兩根為x1,x2,由二次函數的圖象可知,;設方程的兩根為m,n,再根據根與系數的關系即可得出結論.【詳解】解:設的兩根為x1,x2,∵由二次函數的圖象可知,,.設方程的兩根為m,n,則.故選C.【點睛】本題考查的是拋物線與x軸的交點,熟知拋物線與x軸的交點與一元二次方程根的關系是解答此題的關鍵.10、C【解析】分析:要求平均數只要求出數據之和再除以總個數即可;對于中位數,因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(或最中間的兩個數)即可求解.詳解:平均數=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數據的平均數超過130,A正確,C錯誤;因為表中是按從小到大的順序排列的,一共10名選手,中位數為第五位和第六位的平均數,故中位數是(146+148)÷2=147(min),故B正確,D正確.故選C.點睛:本題考查的是平均數和中位數的定義.要注意,當所給數據有單位時,所求得的平均數和中位數與原數據的單位相同,不要漏單位.二、填空題(共7小題,每小題3分,滿分21分)11、。【解析】試題分析:如圖,連接EG,∵,∴設,則。∵點E是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即。∴。∴(只取正值)。∴。12、.【解析】試題分析:sin15°=sin(60°﹣45°)=sin60°?cos45°﹣cos60°?sin45°==.故答案為.考點:特殊角的三角函數值;新定義.13、【解析】
設圓錐的底面圓的半徑為r,由于∠AOB=90°得到AB為圓形紙片的直徑,則OB=cm,根據弧長公式計算出扇形OAB的弧AB的長,然后根據圓錐的側面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長進行計算.【詳解】解:設圓錐的底面圓的半徑為r,連結AB,如圖,∵扇形OAB的圓心角為90°,∴∠AOB=90°,∴AB為圓形紙片的直徑,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的長=π,∴2πr=π,∴r=(cm).故答案為.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為扇形,扇形的弧長等于圓錐底面圓的周長,扇形的半徑等于圓錐的母線長.也考查了圓周角定理和弧長公式.14、17【解析】
根據餅狀圖求出25元所占比重為20%,再根據加權平均數求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點睛】本題考查了加權平均數的計算方法,屬于簡單題,計算25元所占權比是解題關鍵.15、1.2×10﹣1.【解析】
絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10?n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:12納米=12×0.000000001米=1.2×10?1米.故答案為1.2×10?1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10?n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.16、1.【解析】
根據方程的系數結合根的判別式即可得出△=m2﹣4m=0,將其代入2m2﹣8m+1中即可得出結論.【詳解】∵關于x的方程x2﹣mx+m=0有兩個相等實數根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案為1.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數根”是解題的關鍵.17、1【解析】
過點C作CH∥AB交DE的延長線于點H,則,證明,可求出CH,再證明,由比例線段可求出t的值.【詳解】如下圖,過點C作CH∥AB交DE的延長線于點H,則,∵DF∥CH,∴,∴,∴,同理,∴,∴,解得t=1,t=(舍去),故答案為:1.【點睛】本題主要考查了三角形中的動點問題,熟練掌握三角形相似的相關方法是解決本題的關鍵.三、解答題(共7小題,滿分69分)18、(1)y=(2)點B(1,6)在這個反比例函數的圖象上【解析】
(1)設反比例函數的解析式是y=,只需把已知點的坐標代入,即可求得函數解析式;(2)根據反比例函數圖象上點的坐標特征進行判斷.【詳解】設反比例函數的解析式是,則,得.則這個函數的表達式是;因為,所以點不在函數圖象上.【點睛】本題考查了待定系數法求反比例函數解析式:設出含有待定系數的反比例函數解析式y=(k為常數,k≠0);把已知條件(自變量與函數的對應值)代入解析式,得到待定系數的方程;解方程,求出待定系數;寫出解析式.也考查了反比例函數圖象上點的坐標特征.19、1【解析】
通過已知等式化簡得到未知量的關系,代入目標式子求值.【詳解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均為實數,∴x=y=z.∴20、周瑜去世的年齡為16歲.【解析】
設周瑜逝世時的年齡的個位數字為x,則十位數字為x﹣1.根據題意建立方程求出其值就可以求出其結論.【詳解】設周瑜逝世時的年齡的個位數字為x,則十位數字為x﹣1.由題意得;10(x﹣1)+x=x2,解得:x1=5,x2=6當x=5時,周瑜的年齡25歲,非而立之年,不合題意,舍去;當x=6時,周瑜年齡為16歲,完全符合題意.答:周瑜去世的年齡為16歲.【點睛】本題是一道數字問題的運用題,考查了列一元二次方程解實際問題的運用,在解答中理解而立之年是一個人10歲的年齡是關鍵.21、2.7米.【解析】
先根據勾股定理求出AB的長,同理可得出BD的長,進而可得出結論.【詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的寬度CD為2.7米.【點睛】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數學模型,畫出準確的示意圖.領會數形結合的思想的應用.22、(1)見解析;(2)4.1【解析】
試題分析:(1)由正方形的性質得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結論;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甲方指定材料合同協議
- 2025至2030年中國紙面壓紋機數據監測研究報告
- 2025至2030年中國皮芯白布輪數據監測研究報告
- 2025至2030年中國電動固定平臺搬運車數據監測研究報告
- 2025至2030年中國液體化肥數據監測研究報告
- 2025至2030年中國汽車貼紙數據監測研究報告
- 2025至2030年中國果數據監測研究報告
- 2025至2030年中國文件夾附件數據監測研究報告
- 2025至2030年中國推力平面軸承數據監測研究報告
- 2025至2030年中國微型接線端子數據監測研究報告
- 2025年江蘇省徐州市銅山區中考一模道德與法治試題(原卷版+解析版)
- 制造業自檢自控流程優化計劃
- 《人工智能的進展》課件
- 風濕免疫病患者結核病診治及預防實踐指南(2025版)解讀課件
- 大建安-大連市建筑工程安全檔案編制指南
- 上海2024-2025學年五年級數學第二學期期末聯考模擬試題含答案
- GB/T 45421-2025城市公共設施非物流用智能儲物柜服務規范
- 高中家長會 高三高考沖刺家長會課件
- 北京市豐臺區2025屆高三一模試卷語文試題(含答案)
- 安徽省合肥市高三下學期第二次教學質量檢測數學試卷(含答案)
- 2025-2030中國觸覺馬達行業市場發展趨勢與前景展望戰略研究報告
評論
0/150
提交評論