四川省富順縣騎龍學區2024年中考三模數學試題含解析_第1頁
四川省富順縣騎龍學區2024年中考三模數學試題含解析_第2頁
四川省富順縣騎龍學區2024年中考三模數學試題含解析_第3頁
四川省富順縣騎龍學區2024年中考三模數學試題含解析_第4頁
四川省富順縣騎龍學區2024年中考三模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省富順縣騎龍學區2024年中考三模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示,點E在AC的延長線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°2.如圖,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半徑為3,那么下列說法正確的是()A.點B、點C都在⊙A內 B.點C在⊙A內,點B在⊙A外C.點B在⊙A內,點C在⊙A外 D.點B、點C都在⊙A外3.已知一次函數y=(k﹣2)x+k不經過第三象限,則k的取值范圍是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<24.如圖所示,在矩形ABCD中,AB=6,BC=8,對角線AC、BD相交于點O,過點O作OE垂直AC交AD于點E,則DE的長是()A.5 B. C. D.5.我們從不同的方向觀察同一物體時,可能看到不同的圖形,則從正面、左面、上面觀察都不可能看到矩形的是()A. B. C. D.6.世界上最小的開花結果植物是澳大利亞的出水浮萍,這種植物的果實像一個微小的無花果,質量只有0.0000000076克,將數0.0000000076用科學記數法表示為()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×1087.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.1208.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm9.實數a,b,c在數軸上對應點的位置如圖所示,則下列結論中正確的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c10.若一元二次方程x2﹣2kx+k2=0的一根為x=﹣1,則k的值為()A.﹣1 B.0 C.1或﹣1 D.2或0二、填空題(共7小題,每小題3分,滿分21分)11.關于x的方程ax=x+2(a1)的解是________.12.如圖,矩形OABC的邊OA,OC分別在x軸,y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,點B′和B分別對應).若AB=2,反比例函數y=(k≠0)的圖象恰好經過A′,B,則k的值為_____.13.用黑白兩種顏色的正六邊形地面磚按如圖所示的規律,拼成若干圖案:第4個圖案有白色地面磚______塊;第n個圖案有白色地面磚______塊.14.如圖,在等腰直角三角形ABC中,∠C=90°,點D為AB的中點,已知扇形EAD和扇形FBD的圓心分別為點A、點B,且AB=4,則圖中陰影部分的面積為_____(結果保留π).15.如圖,把正方形鐵片OABC置于平面直角坐標系中,頂點A的坐標為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉90°,第一次旋轉至圖①位置,第二次旋轉至圖②位置…,則正方形鐵片連續旋轉2017次后,點P的坐標為____________________.16.方程的解是.17.如圖,在中,,,為邊的高,點在軸上,點在軸上,點在第一象限,若從原點出發,沿軸向右以每秒1個單位長的速度運動,則點隨之沿軸下滑,并帶動在平面內滑動,設運動時間為秒,當到達原點時停止運動連接,線段的長隨的變化而變化,當最大時,______.當的邊與坐標軸平行時,______.三、解答題(共7小題,滿分69分)18.(10分)如圖①,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形.(1)試探究線段AE與CG的關系,并說明理由.(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=1.①線段AE、CG在(1)中的關系仍然成立嗎?若成立,請證明,若不成立,請寫出你認為正確的關系,并說明理由.②當△CDE為等腰三角形時,求CG的長.19.(5分)某校園圖書館添置新書,用240元購進一種科普書,同時用200元購進一種文學書,由于科普書的單價比文學書的價格高出一半,因此,學校所購文學書比科普書多4本,求:(1)這兩種書的單價.(2)若兩種書籍共買56本,總費用不超過696元,則最多買科普書多少本?20.(8分)解不等式組:2x+121.(10分)如圖,在平面直角坐標系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).(1)求直線y=kx+m的表達式;(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標.22.(10分)九(1)班針對“你最喜愛的課外活動項目”對全班學生進行調查(每名學生分別選一個活動項目),并根據調查結果列出統計表,繪制成扇形統計圖.根據以上信息解決下列問題:,;扇形統計圖中機器人項目所對應扇形的圓心角度數為°;從選航模項目的4名學生中隨機選取2名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.23.(12分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使∠CAD=30,∠CBD=60.(1)求AB的長(精確到0.1米,參考數據:);(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.24.(14分)如圖,在△ABC中,AB=BC,CD⊥AB于點D,CD=BD.BE平分∠ABC,點H是BC邊的中點.連接DH,交BE于點G.連接CG.(1)求證:△ADC≌△FDB;(2)求證:(3)判斷△ECG的形狀,并證明你的結論.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

由平行線的判定定理可證得,選項A,B,D能證得AC∥BD,只有選項C能證得AB∥CD.注意掌握排除法在選擇題中的應用.【詳解】A.∵∠3=∠A,本選項不能判斷AB∥CD,故A錯誤;B.∵∠D=∠DCE,∴AC∥BD.本選項不能判斷AB∥CD,故B錯誤;C.∵∠1=∠2,∴AB∥CD.本選項能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項不能判斷AB∥CD,故D錯誤.故選:C.【點睛】考查平行線的判定,掌握平行線的判定定理是解題的關鍵.2、D【解析】

先求出AB的長,再求出AC的長,由B、C到A的距離及圓半徑的長的關系判斷B、C與圓的關系.【詳解】由題意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,點B、點C都在⊙A外.故答案選D.【點睛】本題考查的知識點是點與圓的位置關系,解題的關鍵是熟練的掌握點與圓的位置關系.3、D【解析】

直線不經過第三象限,則經過第二、四象限或第一、二、四象限,當經過第二、四象限時,函數為正比例函數,k=0當經過第一、二、四象限時,,解得0<k<2,綜上所述,0≤k<2。故選D4、C【解析】

先利用勾股定理求出AC的長,然后證明△AEO∽△ACD,根據相似三角形對應邊成比例列式求解即可.【詳解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=,∴DE=8﹣=,故選:C.【點睛】本題考查了矩形的性質,勾股定理,相似三角形對應邊成比例的性質,根據相似三角形對應邊成比例列出比例式是解題的關鍵.5、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依此找到從正面、左面、上面觀察都不可能看到矩形的圖形.【詳解】A、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;B、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤;C、主視圖為等腰梯形,左視圖為等腰梯形,俯視圖為圓環,從正面、左面、上面觀察都不可能看到長方形,故本選項正確;D、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤.故選C.【點睛】本題重點考查了三視圖的定義考查學生的空間想象能力,關鍵是根據主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形解答.6、A【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:將0.0000000076用科學計數法表示為.故選A.【點睛】本題考查了用科學計數法表示較小的數,一般形式為a×,其中,n為由原數左邊起第一個不為0的數字前面的0的個數所決定.7、D【解析】

由tanA的值,利用銳角三角函數定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點睛】此題考查了解直角三角形,銳角三角函數定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.8、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.9、D【解析】分析:根據圖示,可得:c<b<0<a,,據此逐項判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項A不符合題意;∵c<b<0,∴b+c<0,∴選項B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項D符合題意.故選D.點睛:此題考查了數軸,考查了有理數的大小比較關系,考查了不等關系與不等式.熟記有理數大小比較法則,即正數大于0,負數小于0,正數大于一切負數.10、A【解析】

把x=﹣1代入方程計算即可求出k的值.【詳解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故選:A.【點睛】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數的值.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:依據等式的基本性質依次移項、合并同類項、系數化為1即可得出答案.詳解:移項,得:ax﹣x=1,合并同類項,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程兩邊都除以a﹣1,得:x=.故答案為x=.點睛:本題主要考查解一元一次方程的能力,熟練掌握等式的基本性質及解一元一次方程的基本步驟是解題的關鍵.12、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(k≠0)的圖象恰好經過點A′,B,∴m?m=m,∴m=,∴k=故答案為13、18塊(4n+2)塊.【解析】

由已知圖形可以發現:前三個圖形中白色地磚的塊數分別為:6,10,14,所以可以發現每一個圖形都比它前一個圖形多4個白色地磚,所以可以得到第n個圖案有白色地面磚(4n+2)塊.【詳解】解:第1個圖有白色塊4+2,第2圖有4×2+2,第3個圖有4×3+2,所以第4個圖應該有4×4+2=18塊,第n個圖應該有(4n+2)塊.【點睛】此題考查了平面圖形,主要培養學生的觀察能力和空間想象能力.14、4﹣π【解析】

由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長,繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點D為AB的中點,∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【點睛】此題考查了等腰直角三角形的性質以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.15、(6053,2).【解析】

根據前四次的坐標變化總結規律,從而得解.【詳解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…發現點P的位置4次一個循環,∵2017÷4=504余1,P2017的縱坐標與P1相同為2,橫坐標為5+3×2016=6053,∴P2017(6053,2),故答案為(6053,2).考點:坐標與圖形變化﹣旋轉;規律型:點的坐標.16、x=1.【解析】

根據解分式方程的步驟解答即可.【詳解】去分母得:2x=3x﹣1,解得:x=1,經檢驗x=1是分式方程的解,故答案為x=1.【點睛】本題主要考查了解分式方程的步驟,牢牢掌握其步驟就解答此類問題的關鍵.17、4【解析】

(1)由等腰三角形的性質可得AD=BD,從而可求出OD=4,然后根據當O,D,C共線時,OC取最大值求解即可;(2)根據等腰三角形的性質求出CD,分AC∥y軸、BC∥x軸兩種情況,根據相似三角形的判定定理和性質定理列式計算即可.【詳解】(1),,當O,D,C共線時,OC取最大值,此時OD⊥AB.∵,∴△AOB為等腰直角三角形,∴;(2)∵BC=AC,CD為AB邊的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,當AC∥y軸時,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴,即,解得,t=,當BC∥x軸時,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴,即,解得,t=,

則當t=或時,△ABC的邊與坐標軸平行.

故答案為t=或.【點睛】本題考查的是直角三角形的性質,等腰三角形的性質,相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理、靈活運用分情況討論思想是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)AE=CG,AE⊥CG,理由見解析;(2)①位置關系保持不變,數量關系變為;理由見解析;②當△CDE為等腰三角形時,CG的長為或或.【解析】試題分析:證明≌即可得出結論.①位置關系保持不變,數量關系變為證明根據相似的性質即可得出.分成三種情況討論即可.試題解析:(1)理由是:如圖1,∵四邊形EFGD是正方形,∴∵四邊形ABCD是正方形,∴∴∴≌∴∵∴∴即(2)①位置關系保持不變,數量關系變為理由是:如圖2,連接EG、DF交于點O,連接OC,∵四邊形EFGD是矩形,∴Rt中,OG=OF,Rt中,∴∴D、E、F、C、G在以點O為圓心的圓上,∵∴DF為的直徑,∵∴EG也是的直徑,∴∠ECG=90°,即∴∵∴∵∴∴②由①知:∴設分三種情況:(i)當時,如圖3,過E作于H,則EH∥AD,∴∴由勾股定理得:∴(ii)當時,如圖1,過D作于H,∵∴∴∴∴∴(iii)當時,如圖5,∴∴綜上所述,當為等腰三角形時,CG的長為或或.點睛:兩組角對應,兩三角形相似.19、(1)文學書的單價為10元,則科普書的單價為15元;(2)27本【解析】

(1)根據等量關系:文學書數量﹣科普書數量=4本可以列出方程,解方程即可.(2)根據題意列出不等式解答即可.【詳解】(1)設文學書的單價為x元,則科普書的單價為1.5x元,根據題意得:=4,解得:x=10,經檢驗:x=10是原方程的解,∴1.5x=15,答:文學書的單價為10元,則科普書的單價為15元.(2)設最多買科普書m本,可得:15m+10(56﹣m)≤696,解得:m≤27.2,∴最多買科普書27本.【點睛】此題考查分式方程的實際應用,不等式的實際應用,正確理解題意列出方程或是不等式是解題的關鍵.20、x<2.【解析】試題分析:由不等式性質分別求出每一個不等式的解集,找出它們的公共部分即可.試題解析:2x+1由①得:x<3,由②得:x<2,∴不等式組的解集為:x<2.21、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).【解析】

(1)將A代入反比例函數中求出m的值,即可求出直線解析式,(2)聯立方程組求出B的坐標,理由過兩點之間距離公式求出AB的長,求出P點坐標,表示出BP長即可解題.【詳解】解:(1)∵點A(m,2)在雙曲線上,∴m=﹣1,∴A(﹣1,2),直線y=kx﹣1,∵點A(﹣1,2)在直線y=kx﹣1上,∴y=﹣3x﹣1.(2),解得或,∴B(,﹣3),∴AB==,設P(n,0),則有(n﹣)2+32=解得n=5或,∴P1(5,0),P2(,0).【點睛】本題考查了一次函數和反比例函數的交點問題,中等難度,聯立方程組,會用兩點之間距離公式是解題關鍵.22、(1),;(2);(3).【解析】試題分析:(1)利用航模小組先求出數據總數,再求出n.(2)小組所占圓心角=;(3)列表格求概率.試題解析:(1);(2);(3)將選航模項目的名男生編上號碼,將名女生編上號碼.用表格列出所有可能出現的結果:由表格可知,共有種可能出現的結果,并且它們都是第可能的,其中“名

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論