




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濱州市鄒平雙語校2024屆中考數學模擬精編試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.42.若一次函數的圖象經過第一、二、四象限,則下列不等式一定成立的是()A. B. C. D.3.一個正方形花壇的面積為7m2,其邊長為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<44.若一元二次方程x2﹣2x+m=0有兩個不相同的實數根,則實數m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<15.一次函數的圖象不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知:二次函數y=ax2+bx+c(a≠1)的圖象如圖所示,下列結論中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1兩根分別為-3,1;⑤4a+2b+c>1.其中正確的項有()A.2個 B.3個 C.4個 D.5個7.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF8.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°9.下列二次根式中,與是同類二次根式的是()A. B. C. D.10.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°二、填空題(共7小題,每小題3分,滿分21分)11.從﹣2,﹣1,1,2四個數中,隨機抽取兩個數相乘,積為大于﹣4小于2的概率是_____.12.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.13.若分式的值為正,則實數的取值范圍是__________________.14.如圖,在△ABC中,∠ACB=90°,點D是CB邊上一點,過點D作DE⊥AB于點E,點F是AD的中點,連結EF、FC、CE.若AD=2,∠CFE=90°,則CE=_____.15.“復興號”是我國具有完全自主知識產權、達到世界先進水平的動車組列車.“復興號”的速度比原來列車的速度每小時快50千米,提速后從北京到上海運行時間縮短了30分鐘.已知從北京到上海全程約1320千米,求“復興號”的速度.設“復興號”的速度為x千米/時,依題意,可列方程為__.16.如圖,在梯形中,,E、F分別是邊的中點,設,那么等于__________(結果用的線性組合表示).17.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數關系如圖所示.則當乙車到達A地時,甲車已在C地休息了_____小時.三、解答題(共7小題,滿分69分)18.(10分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為xm設垂直于墻的一邊長為ym,直接寫出y與x之間的函數關系式;若菜園面積為384m2,求x的值;求菜園的最大面積.19.(5分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關系,并說明理由;(2)已知AD=5,CD=4,求BC的長.20.(8分)已知點E是矩形ABCD的邊CD上一點,BF⊥AE于點F,求證△ABF∽△EAD.21.(10分)問題情境:課堂上,同學們研究幾何變量之間的函數關系問題:如圖,菱形ABCD的對角線AC,BD相交于點O,AC=4,BD=1.點P是AC上的一個動點,過點P作MN⊥AC,垂足為點P(點M在邊AD、DC上,點N在邊AB、BC上).設AP的長為x(0≤x≤4),△AMN的面積為y.建立模型:(1)y與x的函數關系式為:,解決問題:(1)為進一步研究y隨x變化的規律,小明想畫出此函數的圖象.請你補充列表,并在如圖的坐標系中畫出此函數的圖象:x01134y00(3)觀察所畫的圖象,寫出該函數的兩條性質:.22.(10分)如圖,某校準備給長12米,寬8米的矩形室內場地進行地面裝飾,現將其劃分為區域Ⅰ(菱形),區域Ⅱ(4個全等的直角三角形),剩余空白部分記為區域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區域Ⅱ的面積不超過矩形面積的,若設米.甲乙丙單價(元/米2)(1)當時,求區域Ⅱ的面積.計劃在區域Ⅰ,Ⅱ分別鋪設甲,乙兩款不同的深色瓷磚,區域Ⅲ鋪設丙款白色瓷磚,①在相同光照條件下,當場地內白色區域的面積越大,室內光線亮度越好.當為多少時,室內光線亮度最好,并求此時白色區域的面積.②三種瓷磚的單價列表如下,均為正整數,若當米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,__________.23.(12分)某中學九年級甲、乙兩班商定舉行一次遠足活動,、兩地相距10千米,甲班從地出發勻速步行到地,乙班從地出發勻速步行到地.兩班同時出發,相向而行.設步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數關系圖象如圖所示,根據圖象解答下列問題:直接寫出、與的函數關系式;求甲、乙兩班學生出發后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?24.(14分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結AC,將△AOC繞點O逆時針方向旋轉,記旋轉中的三角形為△A′OC′,在旋轉過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉;2.勾股定理.2、D【解析】∵一次函數y=ax+b的圖象經過第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A錯誤,a?b<0,故B錯誤,ab<0,故C錯誤,<0,故D正確.故選D.3、C【解析】
先根據正方形的面積公式求邊長,再根據無理數的估算方法求取值范圍.【詳解】解:∵一個正方形花壇的面積為,其邊長為,則a的取值范圍為:.故選:C.【點睛】此題重點考查學生對無理數的理解,會估算無理數的大小是解題的關鍵.4、D【解析】分析:根據方程的系數結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數m的取值范圍.詳解:∵方程有兩個不相同的實數根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.5、B【解析】
由二次函數,可得函數圖像經過一、三、四象限,所以不經過第二象限【詳解】解:∵,∴函數圖象一定經過一、三象限;又∵,函數與y軸交于y軸負半軸,
∴函數經過一、三、四象限,不經過第二象限故選B【點睛】此題考查一次函數的性質,要熟記一次函數的k、b對函數圖象位置的影響6、B【解析】
根據二次函數的圖象與性質判斷即可.【詳解】①由拋物線開口向上知:a>1;拋物線與y軸的負半軸相交知c<1;對稱軸在y軸的右側知:b>1;所以:abc<1,故①錯誤;②對稱軸為直線x=-1,,即b=2a,所以b-2a=1.故②錯誤;③由拋物線的性質可知,當x=-1時,y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正確;④因為拋物線的對稱軸為x=1,且與x軸的一個交點的橫坐標為1,所以另一個交點的橫坐標為-3.因此方程ax+bx+c=1的兩根分別是1,-3.故④正確;⑤由圖像可得,當x=2時,y>1,即:4a+2b+c>1,故⑤正確.故正確選項有③④⑤,故選B.【點睛】本題二次函數的圖象與性質,牢記公式和數形結合是解題的關鍵.7、C【解析】
根據全等三角形的判定與性質,可得∠ACB=∠DBE的關系,根據三角形外角的性質,可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【點睛】.本題主要考查全等三角形的判定與性質,熟悉掌握是關鍵.8、B【解析】
先由平行線性質得出∠ACD與∠BAC互補,并根據已知∠ACD=40°計算出∠BAC的度數,再根據角平分線性質求出∠BAE的度數,進而得到∠DEA的度數.【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是熟練掌握兩直線平行,同旁內角互補.9、C【解析】
根據二次根式的性質把各個二次根式化簡,根據同類二次根式的定義判斷即可.【詳解】A.|a|與不是同類二次根式;B.與不是同類二次根式;C.2與是同類二次根式;D.與不是同類二次根式.故選C.【點睛】本題考查了同類二次根式的定義,一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式.10、D【解析】
如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.【點睛】本題主要考查了平行線的性質以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內角互補.解決問題的關鍵是作平行線.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
列表得出所有等可能結果,從中找到積為大于-4小于2的結果數,根據概率公式計算可得.【詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結果,其中積為大于-4小于2的有6種結果,∴積為大于-4小于2的概率為=,故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數與總情況數之比.12、1【解析】
根據題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數據可得答案.【詳解】根據題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數據可得DC2=31,DC=1,故答案為1.13、x>0【解析】【分析】分式值為正,則分子與分母同號,據此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關鍵.14、【解析】
根據直角三角形的中點性質結合勾股定理解答即可.【詳解】解:,點F是AD的中點,.故答案為:.【點睛】此題重點考查學生對勾股定理的理解。熟練掌握勾股定理是解題的關鍵.15、【解析】
設“復興號”的速度為x千米/時,則原來列車的速度為(x-50)千米/時,根據提速后從北京到上海運行時間縮短了30分鐘列出方程即可.【詳解】設“復興號”的速度為x千米/時,則原來列車的速度為(x-50)千米/時,根據題意得.故答案為.【點睛】本題主要考查由實際問題抽象出分式方程,解題的關鍵是理解題意,找到題目蘊含的相等關系.16、.【解析】
作AH∥EF交BC于H,首先證明四邊形EFHA是平行四邊形,再利用三角形法則計算即可.【詳解】作AH∥EF交BC于H.∵AE∥FH,∴四邊形EFHA是平行四邊形,∴AE=HF,AH=EF.∵AE=ED=HF,∴.∵BC=2AD,∴2.∵BF=FC,∴,∴.∵.故答案為:.【點睛】本題考查了平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考??碱}型.17、2.1.【解析】
根據題意和函數圖象中的數據可以求得乙車的速度和到達A地時所用的時間,從而可以解答本題.【詳解】由題意可得,甲車到達C地用時4個小時,乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達A地用時為:(200+240)÷80+1=6.1(小時),當乙車到達A地時,甲車已在C地休息了:6.1﹣4=2.1(小時),故答案為:2.1.【點睛】本題考查了一次函數的圖象,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.三、解答題(共7小題,滿分69分)18、(1)見詳解;(2)x=18;(3)416m2.【解析】
(1)根據“垂直于墻的長度=可得函數解析式;(2)根據矩形的面積公式列方程求解可得;(3)根據矩形的面積公式列出總面積關于x的函數解析式,配方成頂點式后利用二次函數的性質求解可得.【詳解】(1)根據題意知,y==-x+;(2)根據題意,得(-x+)x=384,解得x=18或x=32.∵墻的長度為24m,∴x=18.(3)設菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當x<25時,S隨x的增大而增大.∵x≤24,∴當x=24時,S取得最大值,最大值為416.答:菜園的最大面積為416m2.【點睛】本題主要考查二次函數和一元二次方程的應用,解題的關鍵是將實際問題轉化為一元二次方程和二次函數的問題.19、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點:1.切線的判定與性質;2.相似三角形的判定與性質;3.勾股定理.20、證明見解析【解析】試題分析:先利用等角的余角相等得到根據有兩組角對應相等,即可證明兩三角形相似.試題解析:∵四邊形為矩形,于點F,點睛:兩組角對應相等,兩三角形相似.21、(1)①y=;②;(1)見解析;(3)見解析【解析】
(1)根據線段相似的關系得出函數關系式(1)代入①中函數表達式即可填表(3)畫圖像,分析即可.【詳解】(1)設AP=x①當0≤x≤1時∵MN∥BD∴△APM∽△AOD∴∴MP=∵AC垂直平分MN∴PN=PM=x∴MN=x∴y=AP?MN=②當1<x≤4時,P在線段OC上,∴CP=4﹣x∴△CPM∽△COD∴∴PM=∴MN=1PM=4﹣x∴y==﹣∴y=(1)由(1)當x=1時,y=當x=1時,y=1當x=3時,y=(3)根據(1)畫出函數圖象示意圖可知1、當0≤x≤1時,y隨x的增大而增大1、當1<x≤4時,y隨x的增大而減小【點睛】本題考查函數,解題的關鍵是數形結合思想.22、(1)8m2;(2)68m2;(3)40,8【解析】
(1)根據中心對稱圖形性質和,,,可得,即可解當時,4個全等直角三角形的面積;(2)白色區域面積即是矩形面積減去一二部分的面積,分別用含x的代數式表示出菱形和四個全等直角三角形的面積,列出含有x的解析式表示白色區域面積,并化成頂點式,根據,,,求出自變量的取值范圍,再根據二次函數的增減性即可解答;(3)計算出x=2時各部分面積以及用含m、n的代數式表示出費用,因為m,n均為正整數,解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當時,,(2)∵,∴-,∵,,∴解不等式組得,∵,結合圖像,當時,隨的增大而減小.∴當時,取得最大值為(3)∵當時,SⅠ=4x2=16m2,=12m2,=68m2,總費用:16×2m+12×5n+68
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版二年級音樂上冊 第2單元《唱歌 猜謎語》教學設計
- 太行水庫施工方案
- 2025年中國阻燃著色復合母粒市場調查研究報告
- 《美化社區》(教案)-2024-2025學年四年級上冊勞動人教版
- 中醫醫院發展與基礎設施建設可行性研究
- 現代化養豬場項目可行性研究(僅供參考)
- 四年級美術下冊教案-《第16課 千姿百態的帽子》教學設計人教版
- 泳池燈光施工方案
- 全國人教版初中信息技術八年級上冊第一單元第3課一、《圖形變形》教學設計
- 云南2024年云南省社會科學界聯合會直屬事業單位第二批招聘2人筆試歷年參考題庫附帶答案詳解
- 中考一模質量分析數學
- MOOC 學術英語寫作-東南大學 中國大學慕課答案
- 工程變更通知單ECN模板-20220213
- 《煤礦重大事故隱患判定標準》解讀培訓課件2024(中國煤礦安全技術培訓中心)
- 水污染防治項目商業計劃書
- 化工和危險化學品生產經營單位二十條重大隱患判定標準釋義(中化協)
- 監控運維服務方案
- 2023《住院患者身體約束的護理》團體標準解讀PPT
- 《水電工程環境影響評價規范》(NB-T 10347-2019)
- 問題解決過程PSP-完整版
- 立式注塑機操作指導書
評論
0/150
提交評論