江蘇省鹽城市名校2024年初中數學畢業考試模擬沖刺卷含解析_第1頁
江蘇省鹽城市名校2024年初中數學畢業考試模擬沖刺卷含解析_第2頁
江蘇省鹽城市名校2024年初中數學畢業考試模擬沖刺卷含解析_第3頁
江蘇省鹽城市名校2024年初中數學畢業考試模擬沖刺卷含解析_第4頁
江蘇省鹽城市名校2024年初中數學畢業考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市名校2024年初中數學畢業考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.函數中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣22.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π3.實數4的倒數是()A.4 B. C.﹣4 D.﹣4.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m5.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃6.老師在微信群發了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學的說法不正確的是()A.甲 B.乙 C.丙 D.丁7.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個8.下列實數中,為無理數的是()A. B. C.﹣5 D.0.31569.若a是一元二次方程x2﹣x﹣1=0的一個根,則求代數式a3﹣2a+1的值時需用到的數學方法是()A.待定系數法B.配方C.降次D.消元10.古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數稱為“三角形數”,而把1,4,9,16…這樣的數稱為“正方形數”.從圖中可以發現,任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.下列等式中,符合這一規律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空題(本大題共6個小題,每小題3分,共18分)11.若xay與3x2yb是同類項,則ab的值為_____.12.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上時,則CD的長為_____.13.如圖,在扇形OAB中,∠O=60°,OA=4,四邊形OECF是扇形OAB中最大的菱形,其中點E,C,F分別在OA,,OB上,則圖中陰影部分的面積為__________.14.如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.15.如圖,?ABCD中,對角線AC,BD相交于點O,且AC⊥BD,請你添加一個適當的條件________,使ABCD成為正方形.16.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當“折痕△BEF”面積最大時,點E的坐標為_________________________.三、解答題(共8題,共72分)17.(8分)為更精準地關愛留守學生,某學校將留守學生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學校.某數學小組隨機調查了一個班級,發現該班留守學生數量占全班總人數的20%,并將調查結果制成如下兩幅不完整的統計圖.該班共有名留守學生,B類型留守學生所在扇形的圓心角的度數為;將條形統計圖補充完整;已知該校共有2400名學生,現學校打算對D類型的留守學生進行手拉手關愛活動,請你估計該校將有多少名留守學生在此關愛活動中受益?18.(8分)如圖,點A是反比例函數y1=4x與一次函數y2=kx+b在x軸上方的圖象的交點,過點A作AC⊥x軸,垂足是點C,AC=OC.一次函數求點A的坐標;若梯形ABOC的面積是3,求一次函數y2=kx+b的解析式;結合這兩個函數的完整圖象:當y1>19.(8分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結果保留小數點后一位,參考數據:).20.(8分)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DE⊥AC于E.(1)求證:DE為⊙O的切線;(2)G是ED上一點,連接BE交圓于F,連接AF并延長交ED于G.若GE=2,AF=3,求EF的長.21.(8分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.22.(10分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設拋物線的對稱軸與x軸交于點P,D為第四象限內的一點,若△CPD為等腰直角三角形,求出D點坐標.23.(12分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大?。?4.如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.(1)若直線經過、兩點,求直線和拋物線的解析式;(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】要使有意義,所以x+1≥0且x+1≠0,

解得x>-1.

故選B.2、C【解析】

根據題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.3、B【解析】

根據互為倒數的兩個數的乘積是1,求出實數4的倒數是多少即可.【詳解】解:實數4的倒數是:1÷4=.故選:B.【點睛】此題主要考查了一個數的倒數的求法,要熟練掌握,解答此題的關鍵是要明確:互為倒數的兩個數的乘積是1.4、D【解析】

利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.5、A【解析】

用最高氣溫減去最低氣溫,再根據有理數的減法運算法則“減去一個數等于加上這個數的相反數”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.6、B【解析】

利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質一一判斷即可;【詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【點睛】本題考查正多邊形的性質、等邊三角形的性質、軸對稱圖形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.7、C【解析】

根據有理數的乘方及解一元二次方程-直接開平方法得出兩個有關m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數的乘方及解一元二次方程-直接開平方法,解題的關鍵是熟練的掌握有理數的乘方及解一元二次方程-直接開平方法.8、B【解析】

根據無理數的定義解答即可.【詳解】選項A、是分數,是有理數;選項B、是無理數;選項C、﹣5為有理數;選項D、0.3156是有理數;故選B.【點睛】本題考查了無理數的判定,熟知無理數是無限不循環小數是解決問題的關鍵.9、C【解析】

根據一元二次方程的解的定義即可求出答案.【詳解】由題意可知:a2-a-1=0,

∴a2-a=1,

或a2-1=a

∴a3-2a+1

=a3-a-a+1

=a(a2-1)-(a-1)

=a2-a+1

=1+1

=2

故選:C.【點睛】本題考查了一元二次方程的解,解題的關鍵是正確理解一元二次方程的解的定義.10、C【解析】

本題考查探究、歸納的數學思想方法.題中明確指出:任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.由于“正方形數”為兩個“三角形數”之和,正方形數可以用代數式表示為:(n+1)2,兩個三角形數分別表示為n(n+1)和(n+1)(n+2),所以由正方形數可以推得n的值,然后求得三角形數的值.【詳解】∵A中13不是“正方形數”;選項B、D中等式右側并不是兩個相鄰“三角形數”之和.故選:C.【點睛】此題是一道找規律的題目,這類題型在中考中經常出現.對于找規律的題目首先應找出哪些部分發生了變化,是按照什么規律變化的.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】試題解析:∵xay與3x2yb是同類項,∴a=2,b=1,則ab=2.12、1.1.【解析】分析:由將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉的性質可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點睛:此題考查了旋轉的性質以及等邊三角形的判定與性質.此題比較簡單,注意掌握旋轉前后圖形的對應關系,注意數形結合思想的應用.13、8π﹣8【解析】

連接EF、OC交于點H,根據正切的概念求出FH,根據菱形的面積公式求出菱形FOEC的面積,根據扇形面積公式求出扇形OAB的面積,計算即可.【詳解】連接EF、OC交于點H,則OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面積=×4×4=8,扇形OAB的面積==8π,則陰影部分的面積為8π﹣8,故答案為8π﹣8.【點睛】本題考查了扇形面積的計算、菱形的性質,熟練掌握扇形的面積公式、菱形的性質、靈活運用銳角三角函數的定義是解題的關鍵.14、【解析】試題分析:根據網格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據勾股定理得:,由網格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點:1.網格型問題;2.勾股定理;3.三角形的面積.15、∠BAD=90°(不唯一)【解析】

根據正方形的判定定理添加條件即可.【詳解】解:∵平行四邊形ABCD的對角線AC與BD相交于點O,且AC⊥BD,∴四邊形ABCD是菱形,當∠BAD=90°時,四邊形ABCD為正方形.故答案為:∠BAD=90°.【點睛】本題考查了正方形的判定:先判定平行四邊形是菱形,判定這個菱形有一個角為直角.16、(,2).【解析】

解:如圖,當點B與點D重合時,△BEF面積最大,設BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數形結合思想解題是關鍵.三、解答題(共8題,共72分)17、(1)10,144;(2)詳見解析;(3)96【解析】

(1)依據C類型的人數以及百分比,即可得到該班留守的學生數量,依據B類型留守學生所占的百分比,即可得到其所在扇形的圓心角的度數;(2)依據D類型留守學生的數量,即可將條形統計圖補充完整;(3)依據D類型的留守學生所占的百分比,即可估計該校將有多少名留守學生在此關愛活動中受益.【詳解】解:(1)2÷20%=10(人),×100%×360°=144°,故答案為10,144;(2)10﹣2﹣4﹣2=2(人),如圖所示:(3)2400××20%=96(人),答:估計該校將有96名留守學生在此關愛活動中受益.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.18、(1)點A的坐標為(2,2);(2)y=12x+1;(3)x<-4【解析】

(1)點A在反比例函數y1=4x上,AC⊥x軸,(2)梯形面積=12(OB+2)×2=3,求出B點坐標,將點A(3)結合圖象直接可求解;【詳解】解:(1)∵點A在y1=4x的圖像上,∴AC?OC=4,∴AC=OC=2∴點A的坐標為(2,2);(2)∵梯形ABOC的面積是3,∴12解得OB=1,∴點B的坐標為(0,1),把點A(2,2)與B(0,1)代入y得2=2k+b解得:k=12,∴一次函數y2=kx+b的解析式為(3)由題意可知,作出函數y1=4設函數y1=4∴聯立y1=4∴點E的坐標為(-4,-1)∵y1>y2即∴可將圖像分割成如下圖所示:由圖像可知y1>y2所對應的自變量的取值范圍為:【點睛】本題考查反比例函數和一次函數的圖形及性質;能夠熟練掌握待定系數法求函數的表達式,數形結合求x的取值范圍是解題的關鍵.19、5.7米.【解析】試題分析:由題意,過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.試題解析:解:如答圖,過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH?tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉線CE的長約為5.7米.考點:1.解直角三角形的應用(仰角俯角問題);2.銳角三角函數定義;3.特殊角的三角函數值;4.矩形的判定和性質.20、(1)見解析;(2)∠EAF的度數為30°【解析】

(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據切線的判定定理得到結論;(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAF的度數即可.【詳解】(1)證明:連接OD,如圖,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE為⊙O的切線;(2)解:∵AB為直徑,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴,即整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG∴∠EAG=30°,即∠EAF的度數為30°.【點睛】本題考查了切線的性質:經過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.21、見解析【解析】

根據CE∥DF,可得∠ECA=∠FDB,再利用SAS證明△ACE≌△FDB,得出對應邊相等即可.【詳解】解:∵CE∥DF

∴∠ECA=∠FDB,在△ECA和△FDB中∴△ECA≌△FDB,

∴AE=FB.【點睛】本題主要考查全等三角形的判定與性質和平行線的性質;熟練掌握平行線的性質,證明三角形全等是解決問題的關鍵.22、(1)y=x2-2x-3,(2)D1(4,-1),D2(3,-4),D3(2,-2)【解析】

(1)設解析式為y=a(x-3)(x+1),把點C(0,-3)代入即可求出解析式;(2)根據題意作出圖形,根據等腰直角三角形的性質即可寫出坐標.【詳解】(1)設解析式為y=a(x-3)(x+1),把點C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式為y=x2-2x-3,(2)如圖所示,對稱軸為x=1,過D1作D1H⊥x軸,∵△CPD為等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)過點D2F⊥y軸,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,-4)由圖可知CD1與PD2交于D3,此時PD3⊥CD3,且PD3=CD3,PC=,∴PD3=CD3=故D3(2,-2)∴D1(4,-1),D2(3,-4),D3(2,-2)使△CPD為等腰直角三角形.【點睛】此題主要考察二次函數與等腰直角三角形結合的題,解題的關鍵是熟知二次函數的圖像與性質及等腰直角三角形的性質.23、(1)證明見試題解析;(2)90°.【解析】試題分析:(1)由兩邊對應成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據相似三角形的對應角相等可得:∠A=∠BCD,然后由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論