




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省安慶市安慶二中學東2024年中考沖刺卷數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如果,那么代數式的值是()A.6 B.2 C.-2 D.-62.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:13.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點,作直線MN交AD于點E,則△CDE的周長是()A.7 B.10 C.11 D.124.下列安全標志圖中,是中心對稱圖形的是()A. B. C. D.5.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數圖象大致為()A.B.C.D.6.為了解某班學生每周做家務勞動的時間,某綜合實踐活動小組對該班9名學生進行了調查,有關數據如下表.則這9名學生每周做家務勞動的時間的眾數及中位數分別是()每周做家務的時間(小時)01234人數(人)22311A.3,2.5 B.1,2 C.3,3 D.2,27.將拋物線y=A.y=-12C.y=-128.如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則y關于x的函數圖象大致形狀是()A. B. C. D.9.在直角坐標系中,我們把橫、縱坐標都為整數的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.1010.如圖,直線l1、l2、l3表示三條相互交叉的公路,現要建一個貨物中轉站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,⊙C經過原點且與兩坐標軸分別交于點A與點B,點B的坐標為(﹣,0),M是圓上一點,∠BMO=120°.⊙C圓心C的坐標是_____.12.在四張背面完全相同的卡片上分別印有等腰三角形、平行四邊形、菱形和圓的圖案,現將印有圖案的一面朝下,混合后從中隨機抽取兩張,則抽到卡片上印有圖案都是軸對稱圖形的概率為_____.13.在直角坐標平面內有一點A(3,4),點A與原點O的連線與x軸的正半軸夾角為α,那么角α的余弦值是_____.14.若直角三角形兩邊分別為6和8,則它內切圓的半徑為_____.15.如圖,在△ABC中,AB=AC,BE、AD分別是邊AC、BC上的高,CD=2,AC=6,那么CE=________.16.如果把拋物線y=2x2﹣1向左平移1個單位,同時向上平移4個單位,那么得到的新的拋物線是_____.三、解答題(共8題,共72分)17.(8分)如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:1.(1)求此人所在位置點P的鉛直高度.(結果精確到0.1米)(2)求此人從所在位置點P走到建筑物底部B點的路程(結果精確到0.1米)(測傾器的高度忽略不計,參考數據:tan53°≈,tan63.4°≈2)18.(8分)如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求證:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的長.19.(8分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標.20.(8分)如圖,某校準備給長12米,寬8米的矩形室內場地進行地面裝飾,現將其劃分為區域Ⅰ(菱形),區域Ⅱ(4個全等的直角三角形),剩余空白部分記為區域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區域Ⅱ的面積不超過矩形面積的,若設米.甲乙丙單價(元/米2)(1)當時,求區域Ⅱ的面積.計劃在區域Ⅰ,Ⅱ分別鋪設甲,乙兩款不同的深色瓷磚,區域Ⅲ鋪設丙款白色瓷磚,①在相同光照條件下,當場地內白色區域的面積越大,室內光線亮度越好.當為多少時,室內光線亮度最好,并求此時白色區域的面積.②三種瓷磚的單價列表如下,均為正整數,若當米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,__________.21.(8分)某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.22.(10分)如圖,在正方形中,點是對角線上一個動點(不與點重合),連接過點作,交直線于點.作交直線于點,連接.(1)由題意易知,,觀察圖,請猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.23.(12分)省教育廳決定在全省中小學開展“關注校車、關愛學生”為主題的交通安全教育宣傳周活動,某中學為了了解本校學生的上學方式,在全校范圍內隨機抽查了部分學生,將收集的數據繪制成如下兩幅不完整的統計圖(如圖所示),請根據圖中提供的信息,解答下列問題.m=%,這次共抽取名學生進行調查;并補全條形圖;在這次抽樣調查中,采用哪種上學方式的人數最多?如果該校共有1500名學生,請你估計該校騎自行車上學的學生有多少名?24.為了獎勵優秀班集體,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的單價各是多少元?若學校購買5副乒乓球拍和3副羽毛球拍,一共應支出多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】【分析】將所求代數式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關鍵.2、B【解析】
根據中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質.3、B【解析】∵四邊形ABCD是平行四邊形,
∴AD=BC=4,CD=AB=6,
∵由作法可知,直線MN是線段AC的垂直平分線,
∴AE=CE,
∴AE+DE=CE+DE=AD,
∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.
故選B.4、B【解析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點:中心對稱圖形.5、D【解析】解:當點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數圖象,有一定難度,解題關鍵是注意點Q在BC上這種情況.6、D【解析】試題解析:表中數據為從小到大排列.數據1小時出現了三次最多為眾數;1處在第5位為中位數.所以本題這組數據的中位數是1,眾數是1.故選D.考點:1.眾數;1.中位數.7、D【解析】
將拋物線y=12【詳解】由題意得,a=-12設旋轉180°以后的頂點為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉180°以后的頂點為(2,1),∴旋轉180°以后所得圖象的解析式為:y=-1故選D.【點睛】本題考查了二次函數圖象的旋轉變換,在繞拋物線某點旋轉180°以后,二次函數的開口大小沒有變化,方向相反;設旋轉前的的頂點為(x,y),旋轉中心為(a,b),由中心對稱的性質可知新頂點坐標為(2a-x,2b-y),從而可求出旋轉后的函數解析式.8、C【解析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據所得的函數,利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當0<x≤1時,如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數圖象開口向上;(2)當1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數的圖象,考查了學生從圖象中讀取信息的數形結合能力,體現了分類討論的思想.9、D【解析】試題分析:根據圓的半徑可知:在圓上的整數點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經過任意兩點的“整點直線”有6條,經過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.10、D【解析】
到三條相互交叉的公路距離相等的地點應是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質;這是一道生活聯系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.二、填空題(本大題共6個小題,每小題3分,共18分)11、(,)【解析】
連接AB,OC,由圓周角定理可知AB為⊙C的直徑,再根據∠BMO=120°可求出∠BAO以及∠BCO的度數,在Rt△COD中,解直角三角形即可解決問題;【詳解】連接AB,OC,∵∠AOB=90°,∴AB為⊙C的直徑,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,過C作CD⊥OB于D,則OD=OB,∠DCB=∠DCO=60°,∵B(-,0),∴BD=OD=在Rt△COD中.CD=OD?tan30°=,∴C(-,),故答案為C(-,).【點睛】本題考查的是圓心角、弧、弦的關系及圓周角定理、直角三角形的性質、坐標與圖形的性質及特殊角的三角函數值,根據題意畫出圖形,作出輔助線,利用數形結合求解是解答此題的關鍵.12、【解析】
用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖展示所有12種等可能的結果數,再找出抽到卡片上印有圖案都是軸對稱圖形的結果數,然后根據概率公式求解.【詳解】解:用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖:共有12種等可能的結果數,其中抽到卡片上印有圖案都是軸對稱圖形的結果數為6,所以抽到卡片上印有圖案都是軸對稱圖形的概率.故答案為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.也考查了軸對稱圖形.13、【解析】
根據勾股定理求出OA的長度,根據余弦等于鄰邊比斜邊求解即可.【詳解】∵點A坐標為(3,4),∴OA==5,∴cosα=,故答案為【點睛】本題主要考查銳角三角函數的概念,在直角三角形中,在直角三角形中,正弦等于對邊比斜邊;余弦等于鄰邊比斜邊;正切等于對邊比鄰邊,熟練掌握三角函數的概念是解題關鍵.14、2或-1【解析】
根據已知題意,求第三邊的長必須分類討論,即8是斜邊或直角邊的兩種情況,然后利用勾股定理求出另一邊的長,再根據內切圓半徑公式求解即可.【詳解】若8是直角邊,則該三角形的斜邊的長為:,∴內切圓的半徑為:;若8是斜邊,則該三角形的另一條直角邊的長為:,∴內切圓的半徑為:.故答案為2或-1.【點睛】本題考查了勾股定理,三角形的內切圓,以及分類討論的數學思想,分類討論是解答本題的關鍵.15、【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分別是邊AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案為.16、y=2(x+1)2+1.【解析】原拋物線的頂點為(0,-1),向左平移1個單位,同時向上平移4個單位,那么新拋物線的頂點為(-1,1);可設新拋物線的解析式為y=2(x-h)2+k,代入得:y=2(x+1)2+1.三、解答題(共8題,共72分)17、(1)此人所在P的鉛直高度約為14.3米;(2)從P到點B的路程約為17.1米【解析】分析:(1)過P作PF⊥BD于F,作PE⊥AB于E,設PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的長.詳解:過P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:1,設PF=5x,CF=1x,∵四邊形BFPE為矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+10x.在RT△AEP中,tan∠APE=,∴x=,∴PF=5x=.答:此人所在P的鉛直高度約為14.3米.由(1)得CP=13x,∴CP=13×37.1,BC+CP=90+37.1=17.1.答:從P到點B的路程約為17.1米.點睛:本題考查了解直角三角形的應用,關鍵是正確的畫出與實際問題相符合的幾何圖形,找出圖形中的相關線段或角的實際意義及所要解決的問題,構造直角三角形,用勾股定理或三角函數求相應的線段長.18、(1)見解析;(2)6.【解析】
(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,從而即可證明;
(2)根據相似三角形對應邊成比例即可求出PC=PD=3,再由勾股定理即可求解.【詳解】證明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,
又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,
∵∠PCA=∠PDB,∴△PAC∽△BPD;
(2)∵ACPD=PCBD,PC=PD,AC=3,BD=1
∴PC=PD=【點睛】本題考查了相似三角形的判定與性質及等腰直角三角形,屬于基礎題,關鍵是掌握相似三角形的判定方法.19、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】
(1)設拋物線頂點式解析式y=a(x-1)2+4,然后把點B的坐標代入求出a的值,即可得解;
(2)令y=0,解方程得出點C,D坐標,再用三角形面積公式即可得出結論;
(3)先根據面積關系求出點P的坐標,求出點P的縱坐標,代入拋物線解析式即可求出點P的坐標.【詳解】解:(1)、∵拋物線的頂點為A(1,4),∴設拋物線的解析式y=a(x﹣1)2+4,把點B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵點P在x軸上方的拋物線上,∴yP>0,∴yP=,∵拋物線的解析式為y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).【點睛】本題考查的是二次函數的綜合應用,熟練掌握二次函數的性質是解題的關鍵.20、(1)8m2;(2)68m2;(3)40,8【解析】
(1)根據中心對稱圖形性質和,,,可得,即可解當時,4個全等直角三角形的面積;(2)白色區域面積即是矩形面積減去一二部分的面積,分別用含x的代數式表示出菱形和四個全等直角三角形的面積,列出含有x的解析式表示白色區域面積,并化成頂點式,根據,,,求出自變量的取值范圍,再根據二次函數的增減性即可解答;(3)計算出x=2時各部分面積以及用含m、n的代數式表示出費用,因為m,n均為正整數,解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當時,,(2)∵,∴-,∵,,∴解不等式組得,∵,結合圖像,當時,隨的增大而減小.∴當時,取得最大值為(3)∵當時,SⅠ=4x2=16m2,=12m2,=68m2,總費用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因為m,n均為正整數,解得m=40,n=8.【點睛】本題考查中心對稱圖形性質,菱形、直角三角形的面積計算,二次函數的最值問題,解題關鍵是用含x的二次函數解析式表示出白色區面積.21、解:(1)10,50;(2)解法一(樹狀圖):從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)=;解法二(列表法):(以下過程同“解法一”)【解析】
試題分析:(1)由在一個不透明的箱子里放有4個相同的小球,球上分別標有“0”元,“10”元,“20”元和“30”元的字樣,規定:顧客在本商場同一日內,每消費滿200元,就可以再箱子里先后摸出兩個球(第一次摸出后不放回).即可求得答案;(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與顧客所獲得購物券的金額不低于30元的情況,再利用概率公式求解即可求得答案.試題解析:(1)10,50;(2)解法一(樹狀圖):,從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)==;解法二(列表法):
0
10
20
30
0
﹣﹣
10
20
30
10
10
﹣﹣
30
40
20
20
30
﹣﹣
50
30
30
40
50
﹣﹣
從上表可以看
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國橡膠促進劑市場分析及競爭策略研究報告
- 2025至2030年中國棱形網布市場分析及競爭策略研究報告
- 2025至2030年中國松木數據監測研究報告
- 2025至2030年中國機械管材市場現狀分析及前景預測報告
- 2025至2030年中國木質素纖維行業投資前景及策略咨詢報告
- 2025至2030年中國智能數字兆歐表市場現狀分析及前景預測報告
- 2025至2030年中國旋轉電磁掛梁橋式起重機數據監測研究報告
- 2025至2030年中國斜邊金剛輪行業投資前景及策略咨詢報告
- 2025至2030年中國數碼顯示液壓壓力試驗機市場分析及競爭策略研究報告
- 聯通年中工作總結
- AI在護理查房中的應用
- 2025養殖場租賃合同(合同版本)
- 2025年山西華陽新材料科技集團有限公司招聘筆試參考題庫含答案解析
- 2024雅安雨城區中小學教師招聘考試試題及答案
- 小學六年級數學計算題100道(含答案)
- 中藥輻照滅菌技術指導原則Word版
- AAOS膝關節骨關節炎循證醫學指南(第二版)
- 高血壓危象搶救流程
- B類表(施工單位報審、報驗用表)
- 閥門檢驗記錄表
- 醫療安全不良事件分析記錄表
評論
0/150
提交評論