




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省福州市五校聯考2023-2024學年十校聯考最后數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣22.在一幅長,寬的矩形風景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整幅掛圖的面積是,設金色紙邊的寬為,那么滿足的方程是()A. B.C. D.3.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.4.若,則()A. B. C. D.5.下列大學的校徽圖案是軸對稱圖形的是()A. B. C. D.6.在下列各平面圖形中,是圓錐的表面展開圖的是()A. B. C. D.7.已知一個正n邊形的每個內角為120°,則這個多邊形的對角線有()A.5條 B.6條 C.8條 D.9條8.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.9.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.10.下列方程中,沒有實數根的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點D是線段AB的中點,點C是線段AD的中點,若CD=1,則AB=________________.12.直線y=x與雙曲線y=在第一象限的交點為(a,1),則k=_____.13.分解因式:3ax2﹣3ay2=_____.14.已知反比例函數的圖像經過點,那么的值是__.15.如圖,AB是⊙O的切線,B為切點,AC經過點O,與⊙O分別相交于點D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.16.在一個不透明的口袋中,有3個紅球、2個黃球、一個白球,它們除顏色不同之外其它完全相同,現從口袋中隨機摸出一個球記下顏色后放回,再隨機摸出一個球,則兩次摸到一個紅球和一個黃球的概率是_____.17.空氣質量指數,簡稱AQI,如果AQI在0~50空氣質量類別為優,在51~100空氣質量類別為良,在101~150空氣質量類別為輕度污染,按照某市最近一段時間的AQI畫出的頻數分布直方圖如圖所示.已知每天的AQI都是整數,那么空氣質量類別為優和良的天數共占總天數的百分比為______%.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:(1﹣)÷,其中a=﹣1.19.(5分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發,以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設運動時間為t秒,0<t<1.(1)設四邊形PQCB的面積為S,求S與t的關系式;(2)若點Q關于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.20.(8分)如圖,△ABC內接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數量關系,并說明理由.21.(10分)為了解某校初二學生每周上網的時間,兩位學生進行了抽樣調查.小麗調查了初二電腦愛好者中40名學生每周上網的時間;小杰從全校400名初二學生中隨機抽取了40名學生,調查了每周上網的時間.小麗與小杰整理各自樣本數據,如下表所示.時間段(小時/周)小麗抽樣(人數)小杰抽樣(人數)0~16221~210102~31663~482(1)你認為哪位學生抽取的樣本不合理?請說明理由.專家建議每周上網2小時以上(含2小時)的學生應適當減少上網的時間,估計該校全體初二學生中有多少名學生應適當減少上網的時間.22.(10分)先化簡,再求值:,其中與2,3構成的三邊,且為整數.23.(12分)如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.24.(14分)如圖,在規格為8×8的邊長為1個單位的正方形網格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.(1)畫出△ABC關于直線n的對稱圖形△A′B′C′;(2)直線m上存在一點P,使△APB的周長最小;①在直線m上作出該點P;(保留畫圖痕跡)②△APB的周長的最小值為.(直接寫出結果)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數與x軸有一個交點,當m≠0時,函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關鍵是明確題意,利用分類討論的數學思想解答.2、B【解析】
根據矩形的面積=長×寬,我們可得出本題的等量關系應該是:(風景畫的長+2個紙邊的寬度)×(風景畫的寬+2個紙邊的寬度)=整個掛圖的面積,由此可得出方程.【詳解】由題意,設金色紙邊的寬為,得出方程:(80+2x)(50+2x)=5400,整理后得:故選:B.【點睛】本題主要考查了由實際問題得出一元二次方程,對于面積問題應熟記各種圖形的面積公式,然后根據等量關系列出方程是解題關鍵.3、D【解析】
根據正方形的邊長,根據勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質,相似三角形的性質和判定,能求出△ABR和△RDS的面積是解此題的關鍵.4、D【解析】
等式左邊為非負數,說明右邊,由此可得b的取值范圍.【詳解】解:,
,解得故選D.【點睛】本題考查了二次根式的性質:,.5、B【解析】
根據軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項錯誤;
B、是軸對稱圖形,故本選項正確;
C、不是軸對稱圖形,故本選項錯誤;
D、不是軸對稱圖形,故本選項錯誤.
故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.6、C【解析】
結合圓錐的平面展開圖的特征,側面展開是一個扇形,底面展開是一個圓.【詳解】解:圓錐的展開圖是由一個扇形和一個圓形組成的圖形.故選C.【點睛】考查了幾何體的展開圖,熟記常見立體圖形的展開圖的特征,是解決此類問題的關鍵.注意圓錐的平面展開圖是一個扇形和一個圓組成.7、D【解析】
多邊形的每一個內角都等于120°,則每個外角是60°,而任何多邊形的外角是360°,則求得多邊形的邊數;再根據多邊形一個頂點出發的對角線=n﹣3,即可求得對角線的條數.【詳解】解:∵多邊形的每一個內角都等于120°,∴每個外角是60度,則多邊形的邊數為360°÷60°=6,則該多邊形有6個頂點,則此多邊形從一個頂點出發的對角線共有6﹣3=3條.∴這個多邊形的對角線有(6×3)=9條,故選:D.【點睛】本題主要考查多邊形內角和與外角和及多邊形對角線,掌握求多邊形邊數的方法是解本題的關鍵.8、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;B、剪去陰影部分后,無法組成長方體,故此選項不合題意;C、剪去陰影部分后,能組成長方體,故此選項正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;故選C.9、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【詳解】由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故答案選:B.【點睛】本題考查的知識點是旋轉的性質及扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質及扇形面積的計算.10、B【解析】
分別計算四個方程的判別式的值,然后根據判別式的意義確定正確選項.【詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個不相等的兩個實數根,所以A選項錯誤;
B、△=(-2)2-4×3=-8<0,方程沒有實數根,所以B選項正確;
C、△=(-2)2-4×1=0,方程有兩個相等的兩個實數根,所以C選項錯誤;
D、△=(-2)2-4×(-1)=8>0,方程有兩個不相等的兩個實數根,所以D選項錯誤.
故選:B.【點睛】本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0根時,方程有兩個不相等的兩個實數根;當△=0時,方程有兩個相等的兩個實數根;當△<0時,方程無實數根.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】∵點C是線段AD的中點,若CD=1,∴AD=1×2=2,∵點D是線段AB的中點,∴AB=2×2=4,故答案為4.12、1【解析】分析:首先根據正比例函數得出a的值,然后將交點坐標代入反比例函數解析式得出k的值.詳解:將(a,1)代入正比例函數可得:a=1,∴交點坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是利用待定系數法求函數解析式,屬于基礎題型.根據正比例函數得出交點坐標是解題的關鍵.13、3a(x+y)(x-y)【解析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【點睛】本題考查提公因式法與公式法的綜合運用.14、【解析】
將點的坐標代入,可以得到-1=,然后解方程,便可以得到k的值.【詳解】∵反比例函數y=的圖象經過點(2,-1),
∴-1=
∴k=?;
故答案為k=?.【點睛】本題主要考查函數圖像上的點滿足其解析式,可以結合代入法進行解答15、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.16、【解析】
先畫樹狀圖展示所有36種等可能的結果數,再找出兩次摸到一個紅球和一個黃球的結果數,然后根據概率公式求解.【詳解】畫樹狀圖如下:由樹狀圖可知,共有36種等可能結果,其中兩次摸到一個紅球和一個黃球的結果數為12,所以兩次摸到一個紅球和一個黃球的概率為,故答案為.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式求出事件A或B的概率.17、80【解析】【分析】先求出AQI在0~50的頻數,再根據%,求出百分比.【詳解】由圖可知AQI在0~50的頻數為10,所以,空氣質量類別為優和良的天數共占總天數的百分比為:%=80%..故答案為80【點睛】本題考核知識點:數據的分析.解題關鍵點:從統計圖獲取信息,熟記百分比計算方法.三、解答題(共7小題,滿分69分)18、原式==﹣2.【解析】分析:原式利用分式混合運算順序和運算法則化簡,再將a的值代入計算可得.詳解:原式===,當a=﹣1時,原式==﹣2.點睛:本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式混合運算順序和運算法則.19、(1)S=﹣2(0<t<1);(2);(3)見解析.【解析】
(1)如圖1,根據S=S△ABC-S△APQ,代入可得S與t的關系式;
(2)設PM=x,則AM=2x,可得AP=x=4t,計算x的值,根據直角三角形30度角的性質可得AM=2PM=,根據AM=AO+OM,列方程可得t的值;
(3)存在,通過畫圖可知:N在CD上時,直線PN平分四邊形APMN的面積,根據面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點Q關于O的對稱點為M,∴OM=OQ,設PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當t為秒時,點P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當t為秒時,使得直線PN平分四邊形APMN的面積.【點睛】考查了全等三角形的判定與性質,對稱的性質,三角形和四邊形的面積,二次根式的化簡等知識點,計算量大,解答本題的關鍵是熟練掌握動點運動時所構成的三角形各邊的關系.20、(1);(2)∠CDE=2∠A.【解析】
(1)在Rt△ABC中,由勾股定理得到AB的長,從而得到半徑AO.再由△AOE∽△ACB,得到OE的長;(2)連結OC,得到∠1=∠A,再證∠3=∠CDE,從而得到結論.【詳解】(1)∵AB是⊙O的直徑,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:連結OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考點:切線的性質;探究型;和差倍分.21、(1)小麗;(2)80【解析】
解:(1)小麗;因為她沒有從全校初二學生中隨機進行抽查,不具有隨機性與代表性.(2).答:該校全體初二學生中有80名同學應適當減少上網的時間.22、1【解析】試題分析:先進行分式的除法運算,再進行分式的加減法運算,根據三角形三邊的關系確定出a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 摩托車的騎躍技巧與體驗活動考核試卷
- 廚房電器生產環境與職業健康安全考核試卷
- 木材加工過程中的物料管理優化考核試卷
- 皮革制品修補行業國際標準與認證考核試卷
- 模擬音響電路設計考核試卷
- 紗線疵點分析與防治考核試卷
- 水果種植茬口農業產業國際合作考核試卷
- 紡織品在智能家居環境監測的應用考核試卷
- 洗浴行業服務個性化發展模式探索與應用考核試卷
- 中國心力衰竭診斷與治療指南(2024版)解讀 4
- 繪本故事:睡睡鎮
- 【BIM技術在施工質量控制中的應用研究-以海棠花園項目為例18000字(論文)】
- 舞臺機械及幕布系統
- 鄂爾多斯生態環境職業學院教師招聘考試歷年真題
- 蘇科版八年級數學下冊《二次根式的乘除》評課稿
- 訂單延期交貨的相關處理規定
- 井筒地面預注漿
- 瀘州老窖大學生入職培訓試題三
- Piper疲乏修訂量表附有答案
- 委托采購合同模板 第三方委托采購合同模板(六篇)
- GB/T 4744-2013紡織品防水性能的檢測和評價靜水壓法
評論
0/150
提交評論