2022年遼寧省沈陽市重工第一高級中學高二數學理期末試題含解析_第1頁
2022年遼寧省沈陽市重工第一高級中學高二數學理期末試題含解析_第2頁
2022年遼寧省沈陽市重工第一高級中學高二數學理期末試題含解析_第3頁
2022年遼寧省沈陽市重工第一高級中學高二數學理期末試題含解析_第4頁
2022年遼寧省沈陽市重工第一高級中學高二數學理期末試題含解析_第5頁
已閱讀5頁,還剩6頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年遼寧省沈陽市重工第一高級中學高二數學理期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.在空間四邊形ABCD中,AD=BC=2a,E、F分別是AB、CD的中點,,則異面直線AD與BC所成的角為(

)A.30

B.45

C.60

D.90參考答案:C略2.展開式中只有第六項二項式系數最大,則展開式中的常數項是(

)A.

B.

C.

D.參考答案:A

解析:只有第六項二項式系數最大,則,

,令3.已知命題:,則(

A.

B.C.

D.參考答案:C略4.在△ABC中,已知a=8,B=60°,C=75°,則b等于(

)A.4 B. C.4 D.參考答案:A【考點】正弦定理.【專題】解三角形.【分析】先求得A,進而利用正弦定理求得b的值.【解答】解:A=180°﹣B﹣C=45°,由正弦定理知=,∴b===4,故選A.【點評】本題主要考查了正弦定理的運用.考查了學生對基礎公式的熟練應用.5.復數滿足條件:,那么對應的點的軌跡是()A.圓 B.橢圓 C.雙曲線 D.拋物線參考答案:A6.函數的一個零點在區間內,則實數的取值范圍是A.

B.

C.

D.參考答案:C7.函數的一個單調遞增區間為

()A.

B.

C.

D.參考答案:D8.(n∈N+)的展開式中含有常數項為第()項A.4

B.5

C.6

D.7參考答案:B9.若正實數滿足,則(

A.有最大值4 B.有最小值

C.有最大值

D.有最小值參考答案:C10.若點是的外心,且,則實數的值為(

)A. B.

C.1

D.參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.如圖,已知正三棱柱的所有棱長均為,則異面直線與的距離是_______.參考答案:12.已知數列{an}滿足條件a1=–2,an+1=2+,則a5=

參考答案:

13.已知等比數列{}中,a1+a2=9,a1a2a3=27,則{an}的前n項和Sn=___________.參考答案:略14.已知中心在原點且焦點在x軸的雙曲線C,過點P(2,)且離心率為2,則雙曲線C的標準方程為____________.參考答案:略15.在平面直角坐標系xOy中,拋物線x2=2py(p>0)上縱坐標為1的一點到焦點的距離為3,則焦點到準線的距離為.參考答案:4【考點】拋物線的簡單性質.【專題】計算題;圓錐曲線的定義、性質與方程.【分析】先根據拋物線的方程求得準線的方程,進而利用點A的縱坐標求得點A到準線的距離,進而根據拋物線的定義求得答案.【解答】解:依題意可知拋物線的準線方程為y=點A與拋物線焦點的距離為3,∴縱坐標為1,點A到準線的距離為+1=3,解得p=4.拋物線焦點(0,2),準線方程為y=﹣2,∴焦點到準線的距離為:4.故答案為:4.【點評】本題主要考查了拋物線的定義的運用.考查了學生對拋物線基礎知識的掌握.屬基礎題.16.已知兩條直線和相互平行,則

.參考答案:或略17.已知動圓與圓和圓都外切,則動圓圓心的軌跡方程是_____________。參考答案:略三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知圓的方程為,點是坐標原點.直線與圓交于兩點.

(Ⅰ)求的取值范圍;(Ⅱ)求的中點的軌跡;(Ⅲ)設是線段上的點,且.請將表示為的函數.參考答案:解:(Ⅰ)將代入得則,(*)由得.所以的取值范圍是

...........................3分(Ⅱ)的軌跡方程,的軌跡是以(0,2)為圓心,2為半徑的圓在圓內的一段圓弧,去掉點(0,4)............................3分(Ⅲ)因為M、N在直線l上,可設點M、N的坐標分別為,,則,,又,由得,,所以由(*)知,,所以,因為點Q在直線l上,所以,代入可得,由及得,即.依題意,點Q在圓C內,則,所以,于是,n與m的函數關系為()...........................6分19.已知函數.(I)求函數的定義域;(II)判斷函數的奇偶性;(III)當時,函數,求函數的值域。參考答案:解:(I)由得﹣1<x<1,則函數的定義域為﹙﹣1,1﹚;(II)當x﹙﹣1,1﹚時,,所以函數是奇函數;(III)設,當時,,則函數在區間上是減函數,所以函數g(x)在區間上也是減函數,則函數的最大值為,最小值為,所以函數的值域為[﹣1,1].略20.(本小題滿分14分)已知函數的定義域為,且,,當,且,時恒成立.(1)判斷在上的單調性;(2)解不等式;(3)若對于所有,恒成立,求的取值范圍.參考答案:(1)∵當,且,時恒成立,∴

,…………2分∴

時,∴

,時,∴

…………4分∴

在上是單調增函數

…………5分(2)∵

在上是單調增函數,且

∴,…………7分解得…………8分故所求不等式的解集…………9分

(3)∵

在上是單調增函數,,

∴,…………10分若對于所有,恒成立,則,恒成立,…………11分即,恒成立,令,要使在恒成立,則必須,解得,或…………13分則的取值范圍是…………14分21.設函數.(1)求函數的定義域,并判斷函數的奇偶性;(2)若,解不等式;(3)若,且在上的最小值為,求的值.參考答案:(1)的定義域為,關于原點對稱,,為奇函數。…………4分(2),f(x)在R上單調遞減

…………6分不等式化為,解得

…………9分…………10分,由(1)可知為增函數令h(t)=t2-2mt+2=(t-m)2+2-m2(t≥)

…………13分若m≥,當t=m時,h(t)min=2-m2=-2,∴m=2若m<,當t=時,h(t)min=-3m=-2,解得m=>,舍去綜上可知m=2

…………15分

略22.四棱錐P﹣ABCD中,PD⊥平面ABCD,BC⊥CD,PD=1,AB=,BC=CD=,AD=1.(1)求異面直線AB、PC所成角的余弦值;(2)點E是線段AB的中點,求二面角E﹣PC﹣D的大小.參考答案:【考點】二面角的平面角及求法;異面直線及其所成的角.【分析】(1)以C為原點,CD為x軸,CB為y軸,過C點作平面ABCD的垂線為z軸,建立空間直角坐標系,利用向量法能求出異面直線AB、PC所成角的余弦值.(2)求出平面PCE的法向量和平面PCB的法向量,利用向量法能求出二面角E﹣PC﹣D的大小.【解答】解:(1)以C為原點,CD為x軸,CB為y軸,過C點作平面ABCD的垂線為z軸,建立空間直角坐標系,A(,,0),B(0,,0),C(0,0,0),P(),=(﹣,0,0),=(﹣),設異面直線AB、PC所成角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論