




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
BullRun-
FROMPERSONALIZATIONTOCUSTOMIZATION:
HARNESSINGDATAANDANALYTICSTOFOSTER
BRANDLOVE
retail
Tauchp@ints
SPECIALREPORT
SPONSOREDBY
IftiDigital-
INTRODUCTION
Forthesakeofmentalconvenience,peopleoftentalkabout“personalization”asifit’samonolithicconcept,
whenthetruthisthattherearemanyflavorsofpersonalizationavailabletoretailers.That’sactuallygoodnewsforbrands,whichcanmakestrategicchoicestoleveragedifferentvehiclesforpersonalizationdependingontheir
businessmodel,customerbaseandspecificneeds.InsomecasestheycantakepeshooaSliion-asltl.customization,whichnotonlygivescustomersgreatercontrolovertheirpurchasesbutalsorevealssignificant
datathatbrandscananalyzetocreateevensharperpersonalizationeffortsandboostfuturesales.
“Whilecustomizationallowscustomerstomakeproductalterationsatthetransactionpoint,personalizationisaholisticapproach,”saidBenjaminBond,PrincipalintheConsumerPracticeat
Kearney
inaninterviewwithRetailTouchPoints.“Itspanstheentirecustomerjourney,intelligentlyanticipatingneedsanddeliveringtailored
experiencesevenbeforethecustomerarticulatesthem.”
Thisspecialreportwillexaminethelatestpersonalizationandcustomizationtrends,including:
?ExpandingrolesforgenerativeAIinexecutingpersonalizationatkeypointsintheshopperjourney;
?Thefast-growingimportanceofzero-partyandfirst-partydatatosupportpersonalizationefforts,particularlyasthird-partycookiesdeprecate;and
?Bestpracticesformaximizingpersonalization.
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove2
LimitlessVisions-
GENERATIVEAISUPERCHARGESPERSONALIZATIONCAMPAIGNS
GenerativeAI,thisyear’shottesttechnology,hasquicklybecomeacriticalelementinbrands’personalizationefforts,inlargepartbecauseithelpsmarketersscaleupprogramsquicklyandcost-effectively.
“GenerativeAIisthedrivingforcebehindadvancedpersonalization,transformingrawdataintoactionable
insights,”saidBond.“It’saboutpredictingcustomerneedsandmakinginformed,nuanceddecisionstodeliveronthepromiseofatrulytailoredshoppingexperience.”
AIandmachinelearninghavebeencriticaltopersonalizationeffortsby
GNC
.“Weknowthatinthehealthandwellnesscategory,offeringcustomizedproductstodeliverholistichealthsolutionsisparamount,”saidScottSaeger,formerCIOofGNCinapreviousinterviewwithRetailTouchPoints.
“Whenacustomercomesto,dotheyfeelthatGNCunderstandswhotheyareasaconsumerandthere’snotjustthisbarrageofadsandrecommendationsthatmeannothingtothem?”Saegerasked.“Inthebeginningoftheyear,alotofpeoplewanttotrimdownandlosetheThanksgivingandChristmasweight,soifallI’mdoingisthrowingproteinwheyatyou,that’sreallynottheexperienceyouwant.Beinghyper-personalizedisabout
makingtherightrecommendationsattherighttime.”
GNCalsosupportspersonalizationviaapartnershipwith
Ujet
.UsingmachinelearningandAI,thesolutiongivesGNC’scustomerserviceagentspertinentinformationaboutcustomersthatcangowellbeyondcheckingonanorder’sstatus.GNCusesthesolutiontoquicklyproviderelevantadvice,suchasthebestpost-workoutrecoverydrink,tohelpensureeverycustomerhasapositiveexperiencenomatterwhattheirqueryis.
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove3
sebra-
WHYWEPUTPRODUCTFITATTHE
CENTEROFPERSONALIZATION
ByBrentHollowell,CMOandGMNorthAmerica,Volumental
Researchshowsthat78%ofconsumerswanttobedelightedbygreatpersonalizedexperiences,butonly18%sayretailcompaniesarecurrentlymeetingtheseexpectations.Webelievethatfittingtechnology,orFitTech,isapowerfultoolforretailerstomeetthegrowingdemandforpersonalized,customizedconsumerexperiences.
KnowYourCustomer
Volumentalspecializesinfittingtechnology,orFitTech.Wescanthefeetofshoeshoppersin3D,andthenwematchthatdatawithconsumerpurchasebehaviortogivetailoredrecommendations.Essentiallyweofferfitasaserviceasawayforbrandsandretailerstodeliverexcellentcustomerexperiences.
Withover45millionfootscanscollected,we'veamassedtheworld'slargestcollectionofsuchdata.Retailers
candeploytheirdataacrossin-store,omnichannelandecommerceoperations.Thisaccessibilityempowers
retailerstoprovideatailoredexperiencetoeachindividualcustomerbysuggestingthemostsuitablefootwearmodelsandsizesbasedontheinsightswe'vegathered.
Atthecoreofthiscapabilityliesfirst-partydata.Ofcourse,whenitcomestoutilizingdataforpersonalization,privacyandconsentarecritical.Whatwe'vefoundisthatshopperswillinglygrantconsenttosharetheir
informationbecausetheyseetheclearvalueitbrings.
Inphysicalstores,ourscannerspromptuserstooptinbyprovidingtheiremailaddress,andremarkably,our
emailcapturerateaverages71%,andforthehighestperformingretailers,itexceeds90%.Whenretailers
demonstratetheirabilitytostreamlinethebuyingprocess,customersaremorethanwillingtoreciprocatewiththeirtrustandengagement.
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove4
ThePotentialofGenerativeAI
GenerativeAIhasthepotentialtoenhancehowwecommunicateproductrecommendationstoshoppers.
Imagineascenariowherearetailercanprovideamoredetailedexplanationbehindarecommendation.Forinstance,insteadofsimplysuggestingashoeinsize91?2overasize10,theycouldalsoclarifywhythischoicewasmade.Thisexplanationcouldberootedinfactorslikethecustomer'sheight,weightandintendeduse
fortheshoe.Dependingonusage,generativeAIcouldeventakeitastepfurtherbyconsideringyouruniquerunningstyleorthetypeofjobyouhave.Ultimately,theaimistogiveshoppersmoreconfidence,making
suretheytrustboththerecommendedsizeandthechosenproduct.
BackwhenIworkedatafootwearcompany,weusedtosendshoestofittesters,butwedidn'thaveaclue
abouttheiruniquefootshapes.Theresultswereallovertheplaceintermsofhowwelltheshoesfit.Butnowweactuallyscantheirfeet,sowhenwegettheirfeedback,weknowwhichshoeworkedforthemandwhichdidn't,andwhy.
Inthefuture,retailerscouldcombineallthisfootscandatatogetahandleonwhatalltheircustomers'
feetlooklike,whichcouldseriouslyimprovehowtheymanagetheirinventory.Theymightrealize,"Hey,wethoughtweneededonly13%ofsize91?2forthisshoe,butitturnsoutweneed20%."Sotheycantweak
inventorybasedonthesescansinsteadofusinghistoricalsalesnumbersonly,whichdon’treallycapturemissedsalesopportunities.
Andwithallthisdatainhand,retailerscanhavebetterconversationswiththeirmanufacturers.Iftheyseethatalotofpeopleareintodifferentwidthsofshoes,theycouldsuggestsomethinglike,"Insteadofmakingyetanothercolorforyoursixth-orseventh-bestperformingshoe,whynotoffermorewidthsforyourmostpopularstyles?"It'salmostlikepersonalizationinreverse—we'remakingthestore'sinventorymatchwhatcustomers'feetarereallylike.
Attheendoftheday,customizationisaboutbringingretailersandbuyersclosertogether.Whenweusedeepdataintherightway,wecanhelpretailersdeliverthosefantasticexperiencesthatshopperswantfromthem.
LearnmoreaboutVolumentalat
/.
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove5
-
CANZERO-ANDFIRST-PARTYSOURCESFILL
PERSONALIZATION’SDATAREQUIREMENTS?
Becausepersonalizationgoesbeyondbasiccustomersegmentationandpersona-buildingefforts,itrequiresgranulardataattheindividuallevel.However,withthecomingdeprecationofthird-partycookies,oneofthemostcommonsourcesofconsumerbrowsingandpurchasingbehavior,brandsareturningtozero-andfirst-partydata.Zero-partydataisinformationconsumersintentionallysharewithabrand,e.g.whentakingaquiz,whilefirst-partydataiscollectedbythebrandasaresultofinteractionswithitsowncustomers.
Makinggreateruseofzero-andfirst-partydataalsohelpssolveoneofthetrickiestchallengespersonalizationpresents:finding(butnotcrossing)thelineofpersonalprivacy.Consumerswanttherelevanceandrecognitionthatpersonalizationeffortsoffer,buttheyalsodon’twanttofeelcreepedoutorspiedon.
“Utilizingzero-andfirst-partydataseamlesslyalignsvaluewithprivacy,”saidKearney’sBond.“Customerswillinglyshareinformationwhentransparencyandbenefitsintersect,fosteringtrustandpavingthepathforrespectfulpersonalization.”
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove6
For
Volumental
,whichprovidesfootwearfittechnologybasedonscansofcustomers’feet,thatdata-for-valueexchangeisclearlydelineated.“Thehardestthingtogetoutofacustomer[inastoreenvironment]istheiremailaddress,”saidBrentHollowell,CMOatVolumentalinaninterviewwithRetailTouchPoints.“Butwhenyoushowsomeoneacoolscanandaskifyoucanemailittothem,95outof100willagree,andthatgetsthemintothe
[retailer’s]loyaltymatrix.We’veseenpeoplegobackto[thatscan]fiveorsixtimesoverasix-monthperiod.”
In-storetechnologycanalsoserveasastealthybutacceptablemethodforgatheringshopperdata.Forexample,digitalmannequinsfrom
Outform
canbedressedinavarietyofclothingstylesandcolorsthatcustomerscontrolbyscanningaQRcode,providingin-storeinsightsintowhatshoppersareinterestedinseeingandpotentially
purchasing.Themannequintechnologypassivelyrecordsdataincludingdwelltime,numberofsessionsandcontentpreferences.
Becausethedigitalmannequincandirectlylinktoretailers’unifiedcommerceplatforms,executivesget“areal-timeviewofwhatshoppershaveconsideredandpurchased,”saidSimonHathaway,GroupManagingDirector,EMEAatOutformin
anearlierinterview
withRetailTouchPoints.“Theycanthenretargetacrossotheronlinechannelswithtailoredcontentatalatertime,usingA/Btestingtorefinetheinsightsfurther.”
“Utilizingzero-andfirst-partydataseamlesslyaligns
valuewithprivacy.Customerswillinglyshareinformationwhentransparencyandbenefitsintersect,fostering
trustandpavingthepathforrespectfulpersonalization.”
—BenjaminBond,Kearney
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove7
Antonio-
PERSONALIZATIONANDCUSTOMIZATIONBESTPRACTICES
Personalizationandcustomizationeffortsofferbigpayoffstoretailersandbrands,andtherearemanywaystomaximizethesecampaigns’impact:
?Seekmultiplesourcesofcustomerdata:Oneofthebestwaysforaretailertogatherfirst-partydataistooperatealoyaltyprogram.Butevenforthosethatdon’t,thereareothersourcesofcustomer
data:
TangerOutlets
recentlyrevampeditsloyaltyprogramintoatier-basedsubscriptionmodel
andisusinga
Coniq
solutiontosharedataaboutcustomerpreferences,patternsandspendwithitsretailtenants.
DoorDash’s
latestappupgradeincludesanintegratedrewardsprogramthatallowsmerchantsintheU.S.,Canada,AustraliaandNewZealandtocreateprogramsfortheirmostloyal
customers.Whiletheprogramwasn’tsetuptointegratewithrestaurants’loyaltyprogramsatitsdebut,that’salikelyfutureupdate.
?Alignpersonalizationeffortswithcustomerlifetimevalue(CLV)data:Eco-friendlyhaircare
brand
Davines
,dealingwiththelossofin-personcontactbroughtonbyCOVID,workedwith
Coveo
technologytogeneratepersonalizedproductrecommendationsbasedontheindividualshopper’spreviousshoppingjourneys,onlinebehaviorsandhaircarepreferences.Thetechnologyalsoallowed
DavinestofactorinCLV,accordingtoBrianMcGlynn,VPofEcommerceatCoveoinanearlierinterviewwithRetailTouchPoints:“Forexample,wheredoweseeusersthatmightbecominginandlooking
toexperiment?Thatmaybesignalsalong-termcustomer,andwecanapplyautomaticdiscounting,orusebadging,searchandpromotionstoenticesomebodytobecomeacustomer,tosampletheproductsortobemoreinvolvedinthispart.”
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove8
?Personalizationcanbeacompetitivedifferentiatorforsmall-andmid-sizeretailers:
LoopNeighborhood
,a120-storeconveniencechaininCalifornia,usedthe
Algonomy
platformtoengagecustomersinrealtimewithcontextuallyrelevantmessagesbasedontheirbehaviorand
transactionhistory.Theretailercanpromoteweeklyoffers,embedacustomer’ssavingsdashboard,distributepersonalizednewslettersandoffercuratedbundlestoappealtoeachindividual.
?Customizationisapowerfulpersonalizationaccelerant:Onlinebridalbrand
Azazie
usesamade-to-orderbusinessmodelthatalignswellwithcurrentconsumerexpectations.“OneofthekeythingswedoatAzazie,andabigindustrywidepush,ismorecustomizationandpersonalization,”saidRanuColeman,CMOofAzazieinanearlierinterviewwithRetailTouchPoints.“Modernbridesdon’talways
wanttofeelthepressureofasalespersontellingthemwhattheyshouldbuy,sowhatwehavedone
isdesignthiswholeprocesstobemoreonherterms.”Azaziemakesitsdressesavailableinsizesfromzeroto30andoffers70+fabriccolorsand500+styles,allowingfornear-infinitecustomizations—anditcandeliverthefinisheddressinthreetofourweeks,muchmorequicklythanthethreetofive
monthstypicallyneededformade-to-orderdresses.
Personalizationeffortsalsocanpayoffinmoresubtle,butnolessimportant,ways.“Personalizationseeds
thegroundforenhancedinsights,”saidKearney’sBond.“Insightsgleanedfrompersonalizedinteractionsfeedintoacycleofcontinuousimprovementandinnovationasconsumersengagewithpermutationsofofferingsalignedtoattributionmodels.”
GustavsMD-
FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove9
LEARNMORE...
/contact
Imagineeffortlesslyfindingshoesthatfityouperfectly,everytime.That’swhatwedoatVolumental.Withourmarket-leadingfittingtechnology-FitTechf
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 供貨分銷合同樣本樣本
- 冰淇淋套餐轉(zhuǎn)讓合同樣本
- 當(dāng)月生產(chǎn)計劃的有效制定
- ups設(shè)備銷售合同標(biāo)準(zhǔn)文本
- 2025簡易借款合同范本
- 農(nóng)村供水委托運(yùn)營合同樣本
- 農(nóng)戶養(yǎng)殖種植合同范例
- 關(guān)于員工勞動合同范例
- 出口家具訂購合同樣本
- 2025鐵路運(yùn)輸合同簡易協(xié)議書
- 2022.06英語六級真題第1套
- 數(shù)值分析實驗報告(實驗五實驗六)
- 聽海洋生物講故事1
- 電子表格表格會計記賬憑證模板
- 國家中小學(xué)智慧教育平臺培訓(xùn)專題講座
- 藥融云-甾體類藥物行業(yè)產(chǎn)業(yè)鏈白皮書
- 中國傳統(tǒng)節(jié)日介紹-課件
- AI輔助詩詞鑒賞研究
- 肺彌散功能測定標(biāo)準(zhǔn)
- 肌少癥的診斷評估與治療專家共識(2023年版)
- 小腸系膜腫瘤的CT表現(xiàn)及其鑒別診斷
評論
0/150
提交評論