從個性化到定制化:利用數(shù)據(jù)和分析來培養(yǎng)品牌之愛(英)_第1頁
從個性化到定制化:利用數(shù)據(jù)和分析來培養(yǎng)品牌之愛(英)_第2頁
從個性化到定制化:利用數(shù)據(jù)和分析來培養(yǎng)品牌之愛(英)_第3頁
從個性化到定制化:利用數(shù)據(jù)和分析來培養(yǎng)品牌之愛(英)_第4頁
從個性化到定制化:利用數(shù)據(jù)和分析來培養(yǎng)品牌之愛(英)_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

BullRun-

FROMPERSONALIZATIONTOCUSTOMIZATION:

HARNESSINGDATAANDANALYTICSTOFOSTER

BRANDLOVE

retail

Tauchp@ints

SPECIALREPORT

SPONSOREDBY

IftiDigital-

INTRODUCTION

Forthesakeofmentalconvenience,peopleoftentalkabout“personalization”asifit’samonolithicconcept,

whenthetruthisthattherearemanyflavorsofpersonalizationavailabletoretailers.That’sactuallygoodnewsforbrands,whichcanmakestrategicchoicestoleveragedifferentvehiclesforpersonalizationdependingontheir

businessmodel,customerbaseandspecificneeds.InsomecasestheycantakepeshooaSliion-asltl.customization,whichnotonlygivescustomersgreatercontrolovertheirpurchasesbutalsorevealssignificant

datathatbrandscananalyzetocreateevensharperpersonalizationeffortsandboostfuturesales.

“Whilecustomizationallowscustomerstomakeproductalterationsatthetransactionpoint,personalizationisaholisticapproach,”saidBenjaminBond,PrincipalintheConsumerPracticeat

Kearney

inaninterviewwithRetailTouchPoints.“Itspanstheentirecustomerjourney,intelligentlyanticipatingneedsanddeliveringtailored

experiencesevenbeforethecustomerarticulatesthem.”

Thisspecialreportwillexaminethelatestpersonalizationandcustomizationtrends,including:

?ExpandingrolesforgenerativeAIinexecutingpersonalizationatkeypointsintheshopperjourney;

?Thefast-growingimportanceofzero-partyandfirst-partydatatosupportpersonalizationefforts,particularlyasthird-partycookiesdeprecate;and

?Bestpracticesformaximizingpersonalization.

FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove2

LimitlessVisions-

GENERATIVEAISUPERCHARGESPERSONALIZATIONCAMPAIGNS

GenerativeAI,thisyear’shottesttechnology,hasquicklybecomeacriticalelementinbrands’personalizationefforts,inlargepartbecauseithelpsmarketersscaleupprogramsquicklyandcost-effectively.

“GenerativeAIisthedrivingforcebehindadvancedpersonalization,transformingrawdataintoactionable

insights,”saidBond.“It’saboutpredictingcustomerneedsandmakinginformed,nuanceddecisionstodeliveronthepromiseofatrulytailoredshoppingexperience.”

AIandmachinelearninghavebeencriticaltopersonalizationeffortsby

GNC

.“Weknowthatinthehealthandwellnesscategory,offeringcustomizedproductstodeliverholistichealthsolutionsisparamount,”saidScottSaeger,formerCIOofGNCinapreviousinterviewwithRetailTouchPoints.

“Whenacustomercomesto,dotheyfeelthatGNCunderstandswhotheyareasaconsumerandthere’snotjustthisbarrageofadsandrecommendationsthatmeannothingtothem?”Saegerasked.“Inthebeginningoftheyear,alotofpeoplewanttotrimdownandlosetheThanksgivingandChristmasweight,soifallI’mdoingisthrowingproteinwheyatyou,that’sreallynottheexperienceyouwant.Beinghyper-personalizedisabout

makingtherightrecommendationsattherighttime.”

GNCalsosupportspersonalizationviaapartnershipwith

Ujet

.UsingmachinelearningandAI,thesolutiongivesGNC’scustomerserviceagentspertinentinformationaboutcustomersthatcangowellbeyondcheckingonanorder’sstatus.GNCusesthesolutiontoquicklyproviderelevantadvice,suchasthebestpost-workoutrecoverydrink,tohelpensureeverycustomerhasapositiveexperiencenomatterwhattheirqueryis.

FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove3

sebra-

WHYWEPUTPRODUCTFITATTHE

CENTEROFPERSONALIZATION

ByBrentHollowell,CMOandGMNorthAmerica,Volumental

Researchshowsthat78%ofconsumerswanttobedelightedbygreatpersonalizedexperiences,butonly18%sayretailcompaniesarecurrentlymeetingtheseexpectations.Webelievethatfittingtechnology,orFitTech,isapowerfultoolforretailerstomeetthegrowingdemandforpersonalized,customizedconsumerexperiences.

KnowYourCustomer

Volumentalspecializesinfittingtechnology,orFitTech.Wescanthefeetofshoeshoppersin3D,andthenwematchthatdatawithconsumerpurchasebehaviortogivetailoredrecommendations.Essentiallyweofferfitasaserviceasawayforbrandsandretailerstodeliverexcellentcustomerexperiences.

Withover45millionfootscanscollected,we'veamassedtheworld'slargestcollectionofsuchdata.Retailers

candeploytheirdataacrossin-store,omnichannelandecommerceoperations.Thisaccessibilityempowers

retailerstoprovideatailoredexperiencetoeachindividualcustomerbysuggestingthemostsuitablefootwearmodelsandsizesbasedontheinsightswe'vegathered.

Atthecoreofthiscapabilityliesfirst-partydata.Ofcourse,whenitcomestoutilizingdataforpersonalization,privacyandconsentarecritical.Whatwe'vefoundisthatshopperswillinglygrantconsenttosharetheir

informationbecausetheyseetheclearvalueitbrings.

Inphysicalstores,ourscannerspromptuserstooptinbyprovidingtheiremailaddress,andremarkably,our

emailcapturerateaverages71%,andforthehighestperformingretailers,itexceeds90%.Whenretailers

demonstratetheirabilitytostreamlinethebuyingprocess,customersaremorethanwillingtoreciprocatewiththeirtrustandengagement.

FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove4

ThePotentialofGenerativeAI

GenerativeAIhasthepotentialtoenhancehowwecommunicateproductrecommendationstoshoppers.

Imagineascenariowherearetailercanprovideamoredetailedexplanationbehindarecommendation.Forinstance,insteadofsimplysuggestingashoeinsize91?2overasize10,theycouldalsoclarifywhythischoicewasmade.Thisexplanationcouldberootedinfactorslikethecustomer'sheight,weightandintendeduse

fortheshoe.Dependingonusage,generativeAIcouldeventakeitastepfurtherbyconsideringyouruniquerunningstyleorthetypeofjobyouhave.Ultimately,theaimistogiveshoppersmoreconfidence,making

suretheytrustboththerecommendedsizeandthechosenproduct.

BackwhenIworkedatafootwearcompany,weusedtosendshoestofittesters,butwedidn'thaveaclue

abouttheiruniquefootshapes.Theresultswereallovertheplaceintermsofhowwelltheshoesfit.Butnowweactuallyscantheirfeet,sowhenwegettheirfeedback,weknowwhichshoeworkedforthemandwhichdidn't,andwhy.

Inthefuture,retailerscouldcombineallthisfootscandatatogetahandleonwhatalltheircustomers'

feetlooklike,whichcouldseriouslyimprovehowtheymanagetheirinventory.Theymightrealize,"Hey,wethoughtweneededonly13%ofsize91?2forthisshoe,butitturnsoutweneed20%."Sotheycantweak

inventorybasedonthesescansinsteadofusinghistoricalsalesnumbersonly,whichdon’treallycapturemissedsalesopportunities.

Andwithallthisdatainhand,retailerscanhavebetterconversationswiththeirmanufacturers.Iftheyseethatalotofpeopleareintodifferentwidthsofshoes,theycouldsuggestsomethinglike,"Insteadofmakingyetanothercolorforyoursixth-orseventh-bestperformingshoe,whynotoffermorewidthsforyourmostpopularstyles?"It'salmostlikepersonalizationinreverse—we'remakingthestore'sinventorymatchwhatcustomers'feetarereallylike.

Attheendoftheday,customizationisaboutbringingretailersandbuyersclosertogether.Whenweusedeepdataintherightway,wecanhelpretailersdeliverthosefantasticexperiencesthatshopperswantfromthem.

LearnmoreaboutVolumentalat

/.

FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove5

-

CANZERO-ANDFIRST-PARTYSOURCESFILL

PERSONALIZATION’SDATAREQUIREMENTS?

Becausepersonalizationgoesbeyondbasiccustomersegmentationandpersona-buildingefforts,itrequiresgranulardataattheindividuallevel.However,withthecomingdeprecationofthird-partycookies,oneofthemostcommonsourcesofconsumerbrowsingandpurchasingbehavior,brandsareturningtozero-andfirst-partydata.Zero-partydataisinformationconsumersintentionallysharewithabrand,e.g.whentakingaquiz,whilefirst-partydataiscollectedbythebrandasaresultofinteractionswithitsowncustomers.

Makinggreateruseofzero-andfirst-partydataalsohelpssolveoneofthetrickiestchallengespersonalizationpresents:finding(butnotcrossing)thelineofpersonalprivacy.Consumerswanttherelevanceandrecognitionthatpersonalizationeffortsoffer,buttheyalsodon’twanttofeelcreepedoutorspiedon.

“Utilizingzero-andfirst-partydataseamlesslyalignsvaluewithprivacy,”saidKearney’sBond.“Customerswillinglyshareinformationwhentransparencyandbenefitsintersect,fosteringtrustandpavingthepathforrespectfulpersonalization.”

FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove6

For

Volumental

,whichprovidesfootwearfittechnologybasedonscansofcustomers’feet,thatdata-for-valueexchangeisclearlydelineated.“Thehardestthingtogetoutofacustomer[inastoreenvironment]istheiremailaddress,”saidBrentHollowell,CMOatVolumentalinaninterviewwithRetailTouchPoints.“Butwhenyoushowsomeoneacoolscanandaskifyoucanemailittothem,95outof100willagree,andthatgetsthemintothe

[retailer’s]loyaltymatrix.We’veseenpeoplegobackto[thatscan]fiveorsixtimesoverasix-monthperiod.”

In-storetechnologycanalsoserveasastealthybutacceptablemethodforgatheringshopperdata.Forexample,digitalmannequinsfrom

Outform

canbedressedinavarietyofclothingstylesandcolorsthatcustomerscontrolbyscanningaQRcode,providingin-storeinsightsintowhatshoppersareinterestedinseeingandpotentially

purchasing.Themannequintechnologypassivelyrecordsdataincludingdwelltime,numberofsessionsandcontentpreferences.

Becausethedigitalmannequincandirectlylinktoretailers’unifiedcommerceplatforms,executivesget“areal-timeviewofwhatshoppershaveconsideredandpurchased,”saidSimonHathaway,GroupManagingDirector,EMEAatOutformin

anearlierinterview

withRetailTouchPoints.“Theycanthenretargetacrossotheronlinechannelswithtailoredcontentatalatertime,usingA/Btestingtorefinetheinsightsfurther.”

“Utilizingzero-andfirst-partydataseamlesslyaligns

valuewithprivacy.Customerswillinglyshareinformationwhentransparencyandbenefitsintersect,fostering

trustandpavingthepathforrespectfulpersonalization.”

—BenjaminBond,Kearney

FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove7

Antonio-

PERSONALIZATIONANDCUSTOMIZATIONBESTPRACTICES

Personalizationandcustomizationeffortsofferbigpayoffstoretailersandbrands,andtherearemanywaystomaximizethesecampaigns’impact:

?Seekmultiplesourcesofcustomerdata:Oneofthebestwaysforaretailertogatherfirst-partydataistooperatealoyaltyprogram.Butevenforthosethatdon’t,thereareothersourcesofcustomer

data:

TangerOutlets

recentlyrevampeditsloyaltyprogramintoatier-basedsubscriptionmodel

andisusinga

Coniq

solutiontosharedataaboutcustomerpreferences,patternsandspendwithitsretailtenants.

DoorDash’s

latestappupgradeincludesanintegratedrewardsprogramthatallowsmerchantsintheU.S.,Canada,AustraliaandNewZealandtocreateprogramsfortheirmostloyal

customers.Whiletheprogramwasn’tsetuptointegratewithrestaurants’loyaltyprogramsatitsdebut,that’salikelyfutureupdate.

?Alignpersonalizationeffortswithcustomerlifetimevalue(CLV)data:Eco-friendlyhaircare

brand

Davines

,dealingwiththelossofin-personcontactbroughtonbyCOVID,workedwith

Coveo

technologytogeneratepersonalizedproductrecommendationsbasedontheindividualshopper’spreviousshoppingjourneys,onlinebehaviorsandhaircarepreferences.Thetechnologyalsoallowed

DavinestofactorinCLV,accordingtoBrianMcGlynn,VPofEcommerceatCoveoinanearlierinterviewwithRetailTouchPoints:“Forexample,wheredoweseeusersthatmightbecominginandlooking

toexperiment?Thatmaybesignalsalong-termcustomer,andwecanapplyautomaticdiscounting,orusebadging,searchandpromotionstoenticesomebodytobecomeacustomer,tosampletheproductsortobemoreinvolvedinthispart.”

FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove8

?Personalizationcanbeacompetitivedifferentiatorforsmall-andmid-sizeretailers:

LoopNeighborhood

,a120-storeconveniencechaininCalifornia,usedthe

Algonomy

platformtoengagecustomersinrealtimewithcontextuallyrelevantmessagesbasedontheirbehaviorand

transactionhistory.Theretailercanpromoteweeklyoffers,embedacustomer’ssavingsdashboard,distributepersonalizednewslettersandoffercuratedbundlestoappealtoeachindividual.

?Customizationisapowerfulpersonalizationaccelerant:Onlinebridalbrand

Azazie

usesamade-to-orderbusinessmodelthatalignswellwithcurrentconsumerexpectations.“OneofthekeythingswedoatAzazie,andabigindustrywidepush,ismorecustomizationandpersonalization,”saidRanuColeman,CMOofAzazieinanearlierinterviewwithRetailTouchPoints.“Modernbridesdon’talways

wanttofeelthepressureofasalespersontellingthemwhattheyshouldbuy,sowhatwehavedone

isdesignthiswholeprocesstobemoreonherterms.”Azaziemakesitsdressesavailableinsizesfromzeroto30andoffers70+fabriccolorsand500+styles,allowingfornear-infinitecustomizations—anditcandeliverthefinisheddressinthreetofourweeks,muchmorequicklythanthethreetofive

monthstypicallyneededformade-to-orderdresses.

Personalizationeffortsalsocanpayoffinmoresubtle,butnolessimportant,ways.“Personalizationseeds

thegroundforenhancedinsights,”saidKearney’sBond.“Insightsgleanedfrompersonalizedinteractionsfeedintoacycleofcontinuousimprovementandinnovationasconsumersengagewithpermutationsofofferingsalignedtoattributionmodels.”

GustavsMD-

FromPersonalizationtoCustomization:HarnessingDataandAnalyticstoFosterBrandLove9

LEARNMORE...

/contact

Imagineeffortlesslyfindingshoesthatfityouperfectly,everytime.That’swhatwedoatVolumental.Withourmarket-leadingfittingtechnology-FitTechf

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論