西藏拉薩市達孜縣中學2023-2024學年數(shù)學九上期末復習檢測試題含解析_第1頁
西藏拉薩市達孜縣中學2023-2024學年數(shù)學九上期末復習檢測試題含解析_第2頁
西藏拉薩市達孜縣中學2023-2024學年數(shù)學九上期末復習檢測試題含解析_第3頁
西藏拉薩市達孜縣中學2023-2024學年數(shù)學九上期末復習檢測試題含解析_第4頁
西藏拉薩市達孜縣中學2023-2024學年數(shù)學九上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

西藏拉薩市達孜縣中學2023-2024學年數(shù)學九上期末復習檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.小廣,小嬌分別統(tǒng)計了自己近5次數(shù)學測試成績,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定性的是()A.方差 B.平均數(shù) C.眾數(shù) D.中位數(shù)2.如圖,在中,,則的值為()A. B. C. D.3.下列函數(shù)中,y關于x的二次函數(shù)是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x24.已知正方形的邊長為4cm,則其對角線長是()A.8cm B.16cm C.32cm D.cm5.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是(

)A. B. C. D.6.趙州橋的橋拱可以用拋物線的一部分表示,函數(shù)關系為,當水面寬度AB為20m時,水面與橋拱頂?shù)母叨菵O等于()A.2m B.4m C.10m D.16m7.已知在直角坐標平面內,以點P(﹣2,3)為圓心,2為半徑的圓P與x軸的位置關系是()A.相離 B.相切C.相交 D.相離、相切、相交都有可能8.已知(﹣1,y1),(2,y2),(3,y3)在二次函數(shù)y=﹣x2+4x+c的圖象上,則y1,y2,y3的大小關系正確的是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y29.為了宣傳垃圾分類,童威寫了一篇倡議書,決定用微博轉發(fā)的方式傳播.他設計了如下的傳播規(guī)則:將倡議書發(fā)表在自己的微博上,再邀請n個好友轉發(fā),每個好友轉發(fā)之后,又邀請n個互不相同的好友轉發(fā),依次類推.已知經(jīng)過兩輪轉發(fā)后,共有111個人參與了宣傳活動,則n的值為()A.9 B.10 C.11 D.1210.分別寫有數(shù)字0,﹣1,﹣2,1,3的五張卡片,除數(shù)字不同外其他均相同,從中任抽一張,那么抽到負數(shù)的概率是()A. B. C. D.11.如圖,在中,,,.點P是邊AC上一動點,過點P作交BC于點Q,D為線段PQ的中點,當BD平分時,AP的長度為()A. B. C. D.12.如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設三角形OMP的面積為S,P點運動時間為t,則S關于x的函數(shù)圖象大致為()A. B. C. D.二、填空題(每題4分,共24分)13.若點是雙曲線上的點,則__________(填“>”,“<”或“=”)14.已知y=x2+(1﹣a)x+2是關于x的二次函數(shù),當x的取值范圍是0≤x≤4時,y僅在x=4時取得最大值,則實數(shù)a的取值范圍是_____.15.如圖,轉動轉盤一次,當轉盤停止后(指針落在線上重轉),指針停留的區(qū)域中的數(shù)字為偶數(shù)的概率是___________.16.如圖,正方形內接于,正方形的邊長為,若在這個圓面上隨意拋一粒豆子,則豆子落在正方形內的概率是_____________.17.拋物線y=(x﹣2)2的頂點坐標是_____.18.點關于原點的對稱點的坐標為________.三、解答題(共78分)19.(8分)先化簡再求值:其中.20.(8分)如圖,在矩形中對角線、相交于點,延長到點,使得四邊形是一個平行四邊形,平行四邊形對角線交、分別為點和點.(1)證明:;(2)若,,則線段的長度.21.(8分)拋物線經(jīng)過點O(0,0)與點A(4,0),頂點為點P,且最小值為-1.(1)求拋物線的表達式;(1)過點O作PA的平行線交拋物線對稱軸于點M,交拋物線于另一點N,求ON的長;(3)拋物線上是否存在一個點E,過點E作x軸的垂線,垂足為點F,使得△EFO∽△AMN,若存在,試求出點E的坐標;若不存在請說明理由.22.(10分)如圖,我國海監(jiān)船在處發(fā)現(xiàn)正北方向處有一艘可疑船只,正沿南偏東方向航行,我海監(jiān)船迅速沿北偏東方向去攔裁,經(jīng)歷小時剛好在處將可疑船只攔截,已知我海監(jiān)船航行的速度是每小時海里,求可疑船只航行的距離.23.(10分)為了提高學生書寫漢字的能力,增強保護漢字的意識,某校舉辦了首屆“漢字聽寫大賽”,學生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績?yōu)椋ǚ郑遥瑢⑵浒捶謹?shù)段分為五組,繪制出以下不完整表格:組別成績(分)頻數(shù)(人數(shù))頻率一20.04二100.2三14b四a0.32五80.16請根據(jù)表格提供的信息,解答以下問題:(1)本次決賽共有_________名學生參加;(2)直接寫出表中_________,_________;(3)請補全下面相應的頻數(shù)分布直方圖;(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為_________.24.(10分)一個二次函數(shù)的圖象經(jīng)過(3,1),(0,-2),(-2,6)三點.求這個二次函數(shù)的解析式并寫出圖象的頂點.25.(12分)2019年,中央全面落實“穩(wěn)房價”的長效管控機制,重慶房市較上一年大幅降溫,11月,LH地產(chǎn)共推出了大平層和小三居兩種房型共80套,其中大平層每套面積180平方米,單價1.8萬元/平方米,小三居每套面積120平方米,單價1.5萬元/平方米.(1)LH地產(chǎn)11月的銷售總額為18720萬元,問11月要推出多少套大平層房型?(2)2019年12月,中央經(jīng)濟會議上重申“房子是拿來住的,不是拿來炒的”,重慶房市成功穩(wěn)定并略有回落.為年底清盤促銷,LH地產(chǎn)調整營銷方案,12月推出兩種房型的總數(shù)量仍為80套,并將大平層的單價在原有基礎上每平方米下調萬元(m>0),將小三居的單價在原有基礎上每平方米下調萬元,這樣大平層的銷量較(1)中11月的銷量上漲了7m套,且推出的房屋全部售罄,結果12月的銷售總額恰好與(1)中I1月的銷售總額相等.求出m的值.26.如圖,已知拋物線經(jīng)過點A(1,0)和B(0,3),其頂點為D.設P為該拋物線上一點,且位于拋物線對稱軸右側,作PH⊥對稱軸,垂足為H,若△DPH與△AOB相似(1)求拋物線的解析式(2)求點P的坐標

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)方差的意義:體現(xiàn)數(shù)據(jù)的穩(wěn)定性,集中程度,波動性大小;方差越小,數(shù)據(jù)越穩(wěn)定.要比較兩位同學在五次數(shù)學測驗中誰的成績比較穩(wěn)定,應選用的統(tǒng)計量是方差.【詳解】平均數(shù),眾數(shù),中位數(shù)都是反映數(shù)字集中趨勢的數(shù)量,方差是反映數(shù)據(jù)離散水平的數(shù)據(jù),也就會說反映數(shù)據(jù)穩(wěn)定程度的數(shù)據(jù)是方差故選A考點:方差2、D【解析】過點A作,垂足為D,在中可求出AD,CD的長,在中,利用勾股定理可求出AB的長,再利用正弦的定義可求出的值.【詳解】解:過點A作,垂足為D,如圖所示.在中,,;在中,,,.故選:D.【點睛】考查了解直角三角形以及勾股定理,通過解直角三角形及勾股定理,求出AD,AB的長是解題的關鍵.3、B【分析】判斷一個函數(shù)是不是二次函數(shù),在關系式是整式的前提下,如果把關系式化簡整理(去括號、合并同類項)后,能寫成y=ax2+bx+c(a,b,c為常數(shù),a≠0)的形式,那么這個函數(shù)就是二次函數(shù),否則就不是.【詳解】A.當a=0時,y=ax2+bx+c=bx+c,不是二次函數(shù),故不符合題意;B.y=x(x﹣1)=x2-x,是二次函數(shù),故符合題意;C.的自變量在分母中,不是二次函數(shù),故不符合題意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函數(shù),故不符合題意;故選B.【點睛】本題考查了二次函數(shù)的定義,一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做二次函數(shù),據(jù)此求解即可.4、D【分析】作一個邊長為4cm的正方形,連接對角線,構成一個直角三角形如下圖所示:由勾股定理得AC2=AB2+BC2,求出AC的值即可.【詳解】解:如圖所示:四邊形ABCD是邊長為4cm的正方形,在Rt△ABC中,由勾股定理得:AC==4cm.所以對角線的長:AC=4cm.故選D.5、A【分析】畫出圖像,勾股定理求出AB的長,表示cosB即可解題.【詳解】解:如下圖,∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=5(勾股定理),∴cosB==,故選A.【點睛】本題考查了三角函數(shù)的求值,屬于簡單題,熟悉余弦函數(shù)的表示是解題關鍵.6、B【分析】根據(jù)題意,水面寬度AB為20則B點的橫坐標為10,利用B點是函數(shù)為圖象上的點即可求解y的值即DO【詳解】根據(jù)題意B的橫坐標為10,把x=10代入,得y=﹣4,∴A(﹣10,﹣4),B(10,﹣4),即水面與橋拱頂?shù)母叨菵O等于4m.故選B.【點睛】本題考查了點的坐標及二次函數(shù)的實際應用.7、A【解析】先求出點P到x軸的距離,再根據(jù)直線與圓的位置關系得出即可.【詳解】解:點P(-2,3)到x軸的距離是3,3>2,所以圓P與軸的位置關系是相離,故選A.【點睛】本題考查了坐標與圖形的性質和直線與圓的位置關系等知識點,能熟記直線與圓的位置關系的內容是解此題的關鍵.8、D【分析】首先根據(jù)二次函數(shù)解析式確定拋物線的對稱軸為x=1,再根據(jù)拋物線的增減性以及對稱性可得y1,y1,y3的大小關系.【詳解】∵二次函數(shù)y=-x1+4x+c=-(x-1)1+c+4,∴對稱軸為x=1,∵a<0,∴x<1時,y隨x增大而增大,當x>1時,y隨x的增大而減小,∵(-1,y1),(1,y1),(3,y3)在二次函數(shù)y=-x1+4x+c的圖象上,且-1<1<3,|-1-1|>|1-3|,∴y1<y3<y1.故選D.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,以及二次函數(shù)的性質,關鍵是掌握二次函數(shù)圖象上點的坐標滿足其解析式.9、B【分析】設邀請了n個好友轉發(fā)倡議書,第一輪傳播了n個人,第二輪傳播了n2個人,根據(jù)兩輪傳播共有111人參與列出方程求解即可.【詳解】由題意,得n+n2+1=111,解得:n1=-11(舍去),n2=10,故選B.【點睛】本題考查了列一元二次方程解實際問題的運用,解答時先由條件表示出第一輪增加的人數(shù)和第二輪增加的人數(shù)根據(jù)兩輪總人數(shù)為111人建立方程是關鍵.10、B【解析】試題分析:根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負數(shù)的概率是.故選B.考點:概率.11、B【分析】根據(jù)勾股定理求出AC,根據(jù)角平分線的定義、平行線的性質得到,得到,根據(jù)相似三角形的性質列出比例式,計算即可.【詳解】解:,,,,,,又,,,,,,,即,解得,,,故選B.【點睛】本題考查的是相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.12、A【分析】結合點P的運動,將點P的運動路線分成O→A、A→B、B→C三段位置來進行分析三角形OMP面積的計算方式,通過圖形的特點分析出面積變化的趨勢,從而得到答案.【詳解】設∠AOM=α,點P運動的速度為a,當點P從點O運動到點A的過程中,S=a2?cosα?sinα?t2,由于α及a均為常量,從而可知圖象本段應為拋物線,且S隨著t的增大而增大;當點P從A運動到B時,由反比例函數(shù)性質可知△OPM的面積為k,保持不變,故本段圖象應為與橫軸平行的線段;當點P從B運動到C過程中,OM的長在減少,△OPM的高與在B點時相同,故本段圖象應該為一段下降的線段;故選A.點睛:本題考查了反比例函數(shù)圖象性質、銳角三角函數(shù)性質,解題的關鍵是明確點P在O→A、A→B、B→C三段位置時三角形OMP的面積計算方式.二、填空題(每題4分,共24分)13、>【分析】根據(jù)得出反比例圖象在每一象限內y隨x的增大而減小,再比較兩點的橫坐標大小,即可比較兩點的縱坐標大小.【詳解】解:∵,,∴反比例函數(shù)的圖象在第一、三象限內,且在每一象限內y隨x的增大而減小,∵點是雙曲線上的點,且1<2,∴,故答案為:>.【點睛】本題考查了反比例函數(shù)的圖象與性質,掌握k>0時,反比例函數(shù)圖象在每一象限內y隨x的增大而減小是解題的關鍵.14、a<1【分析】先求出拋物線的對稱軸,再根據(jù)二次函數(shù)的增減性列出不等式,求解即可.【詳解】解:∵0≤x≤4時,y僅在x=4時取得最大值,∴﹣<,解得a<1.故答案為:a<1.【點睛】本題考查了二次函數(shù)的最值問題,熟練掌握二次函數(shù)的增減性和對稱軸公式是解題的關鍵.15、【分析】由1占圓,2與3占,可得把數(shù)字為1的扇形可以平分成2部分,即可得轉動轉盤一次共有4種等可能的結果,分別是1,1,2,3;然后由概率公式即可求得.【詳解】解:占圓,2與3占,把數(shù)字為1的扇形可以平分成2部分,轉動轉盤一次共有4種等可能的結果,分別是1,1,2,3;當轉盤停止后,指針指向的數(shù)字為偶數(shù)的概率是:.故答案為:.【點睛】此題考查了概率公式的應用.注意用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.16、【分析】在這個圓面上隨意拋一粒豆子,落在圓內每一個地方是均等的,因此計算出正方形和圓的面積,利用幾何概率的計算方法解答即可.【詳解】解:因為正方形的邊長為2cm,則對角線的長為cm,所以⊙O的半徑為cm,直徑為2cm,⊙O的面積為2πcm2;正方形的面積為4cm2因為豆子落在圓內每一個地方是均等的,所以P(豆子落在正方形ABCD內)=.故答案為:.【點睛】此題主要考查幾何概率的意義:一般地,如果試驗的基本事件為n,隨機事件A所包含的基本事件數(shù)為m,我們就用來描述事件A出現(xiàn)的可能性大小,稱它為事件A的概率,記作P(A),即有

P(A)=.17、(2,0).【分析】已知條件的解析式是拋物線的頂點式,根據(jù)頂點式的坐標特點,直接寫出頂點坐標.【詳解】解:∵拋物線解析式為y=(x﹣2)2,∴二次函數(shù)圖象的頂點坐標是(2,0).故答案為(2,0).【點睛】本題的考點是二次函數(shù)的性質.方法是根據(jù)頂點式的坐標特點寫出答案.18、【分析】根據(jù)點關于原點對稱,橫縱坐標都變號,即可得出答案.【詳解】根據(jù)對稱變換規(guī)律,將P點的橫縱坐標都變號后可得點,故答案為.【點睛】本題考查坐標系中點的對稱變換,熟記變換口訣“關于誰對稱,誰不變,另一個變號;關于原點對稱,兩個都變號”.三、解答題(共78分)19、【解析】先將多項式進行因式分解,根據(jù)分式的加減乘除混合運算法則,先對括號里的進行通分,再將除法轉化為乘法,約分化簡即可.【詳解】解:原式,當時,原式.【點睛】本題主要考查了分式的加減乘除混合運算,熟練應用分式的基本性質進行約分和通分是解題的關鍵.20、(1)證明見解析;(2).【分析】(1)首先利用矩形和平行四邊形平行的性質得出和,然后利用相似三角形對應邊成比例,即可得證;(2)利用平行四邊形對角線的性質以及勾股定理和相似三角形的性質進行等量轉換,即可得解.【詳解】(1)證明:∵是矩形,且,∴.∴.又∵是平行四邊形,且AC∥DE∴,∴.∴.∴.(2)∵四邊形為平行四邊形,,相交點,∴∴在直角三角形中,∴又∵,∴.∴∴.【點睛】此題主要考查相似三角形的判定與性質以及勾股定理的運用,熟練掌握,即可解題.21、(1)拋物線的表達式為,(或);(1);(3)拋物線上存在點E,使得△EFO∽△AMN,這樣的點共有1個,分別是(,)和(,).【分析】(1)由點O(0,0)與點A(4,0)的縱坐標相等,可知點O、A是拋物線上的一對對稱點,所以對稱軸為直線x=1,又因為最小值是-1,所以頂點為(1,-1),利用頂點式即可用待定系數(shù)法求解;(1)設拋物線對稱軸交軸于點D、N(,),先求出=45°,由ON∥PA,依據(jù)平行線的性質得到=45°,依據(jù)等腰直角三角形兩直角邊的關系可得到=,解出即可得到點N的坐標,再運用勾股定理求出ON的長度;(3)先運用勾股定理求出AM和OM,再用ON-OM得MN,運用相似三角形的性質得到EF:FO的值,設E(,),分點E在第一象限、第二或四象限討論,依據(jù)EF:FO=1:1列出關于m的方程解出即可.【詳解】解:(1)∵拋物線經(jīng)過點O(0,0)與點A(4,0),∴對稱軸為直線x=1,又∵頂點為點P,且最小值為-1,,∴頂點P(1,-1),∴設拋物線的表達式為將O(0,0)坐標代入,解得∴拋物線的表達式為,即;(1)設拋物線對稱軸交軸于點D,∵頂點P坐標為(1,-1),∴點D坐標為(1,0)又∵A(4,0),∴△ADP是以為直角的等腰直角三角形,=45°又∵ON∥PA,∴=45°∴若設點N的坐標為(,)則=解得,∴點N的坐標為(,)∴(3)拋物線上存在一個點E,使得△EFO∽△AMN,理由如下:連接PO、AM,∵=45°,=90°,∴,又∵由點D坐標為(1,0),得OD=1,∴,又∵=90°,由A(4,0),D(1,0)得AD=1,∴,同理可得,∴,∴AM:MN=:=1:1∵△EFO∽△AMN∴EF:FO=AM:MN=1:1設點E的坐標為(,)(其中),①當點E在第一象限時,,解得,此時點E的坐標為(,),②當點E在第二象限或第四象限時,,解得,此時點E的坐標為(,)綜上所述,拋物線上存在一個點E,使得△EFO∽△AMN,這樣的點共有1個,分別是(,)和(,).【點睛】本題是二次函數(shù)綜合題,考查了運用待定系數(shù)法求解析式,運用勾股定理求線段長度,二次函數(shù)中相似的存在性問題,解題的關鍵是用點的坐標求出線段長度,并根據(jù)線段之間的關系,建立方程解出得到點的坐標.22、70海里.【分析】過作于點,分別利用三角函數(shù)解和,即可進行求解.【詳解】過作于點,根據(jù)題意得:(海里),在中,(海里),在中,(海里),答:可疑船只航行的距離為70海里.【點睛】本題考查了解直角三角形的應用,用到的知識點是方向角含義、三角函數(shù)的定義,關鍵是根據(jù)題意畫出圖形,構造直角三角形.23、(1)50;(2)16;0.28;(3)見詳解;(4)48%【分析】(1)根據(jù)一組的頻數(shù)和頻率比求出總人數(shù);(2)用總人數(shù)乘以第四組的頻率出a;再用第三組的頻數(shù)和總數(shù)比求出b;(3)根據(jù)(2)得出的a的值,補全統(tǒng)計圖;

(4)用成績不低于80分的頻數(shù)除以總數(shù),即可得本次大賽的優(yōu)秀率.【詳解】解(1)抽查的學生總人數(shù)是:2÷0.04=50(人),故答案為50;

(2)a=50×0.32=16,b=14÷50=0.28,故答案為16,0.28;

(3)如圖,(4)優(yōu)秀率為(16+8)÷50=48%,故答案為48%.【點睛】本題考查了頻數(shù)分布直方圖和概率,利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題,概率==所求情況數(shù)與總情況數(shù)之比.24、二次函數(shù)為,頂點.【分析】先設該二次函數(shù)的解析式為y=ax2+bx+c(a≠0),利用待定系數(shù)法求a,b,c的值,得到二次函數(shù)的解析式,然后化為頂點式,即可得到頂點坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論