2024屆山東省泰安市泰安一中高三下學期第八次模擬考試數學試題試卷_第1頁
2024屆山東省泰安市泰安一中高三下學期第八次模擬考試數學試題試卷_第2頁
2024屆山東省泰安市泰安一中高三下學期第八次模擬考試數學試題試卷_第3頁
2024屆山東省泰安市泰安一中高三下學期第八次模擬考試數學試題試卷_第4頁
2024屆山東省泰安市泰安一中高三下學期第八次模擬考試數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省泰安市泰安一中高三下學期第八次模擬考試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.2.已知復數滿足(其中為的共軛復數),則的值為()A.1 B.2 C. D.3.執行下面的程序框圖,如果輸入,,則計算機輸出的數是()A. B. C. D.4.下列函數中,既是奇函數,又是上的單調函數的是()A. B.C. D.5.若實數、滿足,則的最小值是()A. B. C. D.6.若,則實數的大小關系為()A. B. C. D.7.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”:,,,,則按照以上規律,若具有“穿墻術”,則()A.48 B.63 C.99 D.1208.在復平面內,復數(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉的角為,則,法國數學家棣莫弗發現了棣莫弗定理:,,則,由棣莫弗定理可以導出復數乘方公式:,已知,則()A. B.4 C. D.169.已知函數,關于x的方程f(x)=a存在四個不同實數根,則實數a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)10.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.11.雙曲線的漸近線方程是()A. B. C. D.12.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數為().A.432 B.576 C.696 D.960二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.14.已知等比數列的前項和為,,且,則__________.15.已知雙曲線的左右焦點分別關于兩漸近線對稱點重合,則雙曲線的離心率為_____16.已知向量與的夾角為,||=||=1,且⊥(λ),則實數_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,角、、的對邊分別為,,,,.(1)若,求的值;(2)若,求的面積.18.(12分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.19.(12分)已知直線的參數方程為(,為參數),曲線的極坐標方程為.(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;(2)若直線經過點,求直線被曲線截得的線段的長.20.(12分)已知橢圓,點,點滿足(其中為坐標原點),點在橢圓上.(1)求橢圓的標準方程;(2)設橢圓的右焦點為,若不經過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.21.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.22.(10分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【題目詳解】水費開支占總開支的百分比為.故選:A【題目點撥】本題考查折線圖與柱形圖,屬于基礎題.2、D【解題分析】

按照復數的運算法則先求出,再寫出,進而求出.【題目詳解】,,.故選:D【題目點撥】本題考查復數的四則運算、共軛復數及復數的模,考查基本運算能力,屬于基礎題.3、B【解題分析】

先明確該程序框圖的功能是計算兩個數的最大公約數,再利用輾轉相除法計算即可.【題目詳解】本程序框圖的功能是計算,中的最大公約數,所以,,,故當輸入,,則計算機輸出的數是57.故選:B.【題目點撥】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.4、C【解題分析】

對選項逐個驗證即得答案.【題目詳解】對于,,是偶函數,故選項錯誤;對于,,定義域為,在上不是單調函數,故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數.又時,是開口向上的拋物線,對稱軸,在上單調遞增,是奇函數,在上是單調遞增函數,故選項正確;對于,在上單調遞增,在上單調遞增,但,在上不是單調函數,故選項錯誤.故選:.【題目點撥】本題考查函數的基本性質,屬于基礎題.5、D【解題分析】

根據約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,求出最優解的坐標,代入目標函數得答案【題目詳解】作出不等式組所表示的可行域如下圖所示:聯立,得,可得點,由得,平移直線,當該直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【題目點撥】本題考查簡單的線性規劃,考查數形結合的解題思想方法,是基礎題.6、A【解題分析】

將化成以為底的對數,即可判斷的大小關系;由對數函數、指數函數的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【題目詳解】依題意,由對數函數的性質可得.又因為,故.故選:A.【題目點撥】本題考查了指數函數的性質,考查了對數函數的性質,考查了對數的運算性質.兩個對數型的數字比較大小時,底數相同,則構造對數函數,結合對數的單調性可判斷大小;若真數相同,則結合對數函數的圖像或者換底公式可判斷大小;若真數和底數都不相同,則可與中間值如1,0比較大小.7、C【解題分析】

觀察規律得根號內分母為分子的平方減1,從而求出n.【題目詳解】解:觀察各式發現規律,根號內分母為分子的平方減1所以故選:C.【題目點撥】本題考查了歸納推理,發現總結各式規律是關鍵,屬于基礎題.8、D【解題分析】

根據復數乘方公式:,直接求解即可.【題目詳解】,.故選:D【題目點撥】本題考查了復數的新定義題目、同時考查了復數模的求法,解題的關鍵是理解棣莫弗定理,將復數化為棣莫弗定理形式,屬于基礎題.9、D【解題分析】

原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數討論.【題目詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數a的取值范圍是(2,2).故選:D.【題目點撥】此題考查方程的根與函數零點問題,關鍵在于等價轉化,將問題轉化為通過導函數討論函數單調性解決問題.10、D【解題分析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【題目詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【題目點撥】本題主要考查了橢圓的定義,橢圓標準方程的求解.11、C【解題分析】

根據雙曲線的標準方程即可得出該雙曲線的漸近線方程.【題目詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【題目點撥】本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.12、B【解題分析】

先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【題目詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產生的空檔中,共有種不同方式;根據分類加法、分步乘法原理,得滿足要求的排隊方法數為種.故選:B.【題目點撥】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

設,由橢圓和雙曲線的定義得到,根據是以為底邊的等腰三角形,得到,從而有,根據,得到,再利用導數法求的范圍.【題目詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【題目點撥】本題主要考查橢圓,雙曲線的定義和幾何性質,還考查了運算求解的能力,屬于中檔題.14、【解題分析】

由題意知,繼而利用等比數列的前項和為的公式代入求值即可.【題目詳解】解:由題意知,所以.故答案為:.【題目點撥】本題考查了等比數列的通項公式和求和公式,屬于中檔題.15、【解題分析】

雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【題目詳解】解:雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【題目點撥】本題考查雙曲線的離心率,考查學生的計算能力,確定一條漸近線的斜率為1是關鍵,屬于基礎題.16、1【解題分析】

根據條件即可得出,由即可得出,進行數量積的運算即可求出λ.【題目詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【題目點撥】考查向量數量積的運算及計算公式,以及向量垂直的充要條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)7(2)14【解題分析】

(1)在中,,可得,結合正弦定理,即可求得答案;(2)根據余弦定理和三角形面積公式,即可求得答案.【題目詳解】(1)在中,,,,,,.(2),,,解得,.【題目點撥】本題主要考查了正弦定理和余弦定理解三角形,解題關鍵是掌握正弦定理邊化角,考查了分析能力和計算能力,屬于中檔題.18、(1)乙的技術更好,見解析(2)①,;②【解題分析】

(1)列出分布列,求出期望,比較大小即可;(2)①直接根據概率的意義可得P0,P8;②設每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數列,根據可得答案.【題目詳解】(1)記甲乙各生產一件零件給工廠帶來的效益分別為元、元,隨機變量,的分布列分別為10521052所以,,所以,即乙的技術更好(2)①表示的是甲得分時,甲最終獲勝的概率,所以,表示的是甲得4分時,甲最終獲勝的概率,所以;②設每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時,最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數列,則,即決賽甲獲勝的概率是.【題目點撥】本題考查離散型隨機變量的分布列和期望,考查數列遞推關系的應用,是一道難度較大的題目.19、(1)曲線表示的是焦點為,準線為的拋物線;(2)8.【解題分析】試題分析:(1)將曲線的極坐標方程為兩邊同時乘以,利用極坐標與直角坐標之間的關系即可得出其直角坐標方程;(2)由直線經過點,可得的值,再將直線的參數方程代入曲線的標準方程,由直線參數方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數方程為(為參數).將直線的參數方程代入得,由直線參數方程的幾何意義可知,.20、(1)(2)是,【解題分析】

(1)設,根據條件可求出的坐標,再利用在橢圓上,代入橢圓方程求出即可;(2)設運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進而求出周長為定值.【題目詳解】(1)設,因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設切點為,則,同理即,所以,又,則的周長,所以周長為定值.【題目點撥】標準方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.21、(1);(2)存在,當時,以線段為直徑的圓恰好經過坐標原點O.【解題分析】

(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論