江西省南昌市新建區第一中學2024屆高三第一次五校聯考自選模塊試題_第1頁
江西省南昌市新建區第一中學2024屆高三第一次五校聯考自選模塊試題_第2頁
江西省南昌市新建區第一中學2024屆高三第一次五校聯考自選模塊試題_第3頁
江西省南昌市新建區第一中學2024屆高三第一次五校聯考自選模塊試題_第4頁
江西省南昌市新建區第一中學2024屆高三第一次五校聯考自選模塊試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省南昌市新建區第一中學2024屆高三第一次五校聯考自選模塊試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,內角A,B,C所對的邊分別為a,b,c,D是AB的中點,若,且,則面積的最大值是()A. B. C. D.2.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.53.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=04.若實數滿足的約束條件,則的取值范圍是()A. B. C. D.5.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為()A.56383 B.57171 C.59189 D.612427.拋物線的焦點為,則經過點與點且與拋物線的準線相切的圓的個數有()A.1個 B.2個 C.0個 D.無數個8.等差數列中,,,則數列前6項和為()A.18 B.24 C.36 D.729.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.10.向量,,且,則()A. B. C. D.11.若函數的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.12.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若滿足約束條件,則的最大值為__________.14.已知三棱錐的四個頂點在球的球面上,,是邊長為2的正三角形,,則球的體積為__________.15.已知數列滿足,,若,則數列的前n項和______.16.如圖,直線平面,垂足為,三棱錐的底面邊長和側棱長都為4,在平面內,是直線上的動點,則點到平面的距離為_______,點到直線的距離的最大值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)我們稱n()元有序實數組(,,…,)為n維向量,為該向量的范數.已知n維向量,其中,,2,…,n.記范數為奇數的n維向量的個數為,這個向量的范數之和為.(1)求和的值;(2)當n為偶數時,求,(用n表示).18.(12分)如圖,三棱柱中,側面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.19.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.20.(12分)在直角坐標系中,曲線的參數方程是(是參數),以原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線的極坐標方程;(2)在曲線上取一點,直線繞原點逆時針旋轉,交曲線于點,求的最大值.21.(12分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.22.(10分)已知函數(1)求f(x)的單調遞增區間;(2)△ABC內角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

根據正弦定理可得,求出,根據平方關系求出.由兩端平方,求的最大值,根據三角形面積公式,求出面積的最大值.【題目詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點,且,,即,即,,當且僅當時,等號成立.的面積,所以面積的最大值為.故選:.【題目點撥】本題考查正、余弦定理、不等式、三角形面積公式和向量的數量積運算,屬于中檔題.2、B【解題分析】

還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【題目詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【題目點撥】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.3、A【解題分析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.4、B【解題分析】

根據所給不等式組,畫出不等式表示的可行域,將目標函數化為直線方程,平移后即可確定取值范圍.【題目詳解】實數滿足的約束條件,畫出可行域如下圖所示:將線性目標函數化為,則將平移,平移后結合圖像可知,當經過原點時截距最小,;當經過時,截距最大值,,所以線性目標函數的取值范圍為,故選:B.【題目點撥】本題考查了線性規劃的簡單應用,線性目標函數取值范圍的求法,屬于基礎題.5、C【解題分析】

根據線面平行的性質定理和判定定理判斷與的關系即可得到答案.【題目詳解】若,根據線面平行的性質定理,可得;若,根據線面平行的判定定理,可得.故選:C.【題目點撥】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.6、C【解題分析】

根據“被5除余3且被7除余2的正整數”,可得這些數構成等差數列,然后根據等差數列的前項和公式,可得結果.【題目詳解】被5除余3且被7除余2的正整數構成首項為23,公差為的等差數列,記數列則令,解得.故該數列各項之和為.故選:C.【題目點撥】本題考查等差數列的應用,屬基礎題。7、B【解題分析】

圓心在的中垂線上,經過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【題目詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數是2種.故選:.【題目點撥】本題主要考查拋物線的簡單性質,本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.8、C【解題分析】

由等差數列的性質可得,根據等差數列的前項和公式可得結果.【題目詳解】∵等差數列中,,∴,即,∴,故選C.【題目點撥】本題主要考查了等差數列的性質以及等差數列的前項和公式的應用,屬于基礎題.9、A【解題分析】

作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【題目詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【題目點撥】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.10、D【解題分析】

根據向量平行的坐標運算以及誘導公式,即可得出答案.【題目詳解】故選:D【題目點撥】本題主要考查了由向量平行求參數以及誘導公式的應用,屬于中檔題.11、B【解題分析】

把已知點坐標代入求出,然后驗證各選項.【題目詳解】由題意,,或,,不妨取或,若,則函數為,四個選項都不合題意,若,則函數為,只有時,,即是對稱軸.故選:B.【題目點撥】本題考查正弦型復合函數的對稱軸,掌握正弦函數的性質是解題關鍵.12、A【解題分析】

畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【題目詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【題目點撥】本題主要考查線性規劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、4【解題分析】

作出可行域如圖所示:由,解得.目標函數,即為,平移斜率為-1的直線,經過點時,.14、【解題分析】

由題意可得三棱錐的三條側棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【題目詳解】解:因為,為正三角形,所以,因為,所以三棱錐的三條側棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因為正方體的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:【題目點撥】此題考查球的體積,幾何體的外接球,考查空間想象能力,計算能力,屬于中檔題.15、【解題分析】

,求得的通項,進而求得,得通項公式,利用等比數列求和即可.【題目詳解】由題為等差數列,∴,∴,∴,∴,故答案為【題目點撥】本題考查求等差數列數列通項,等比數列求和,熟記等差等比性質,熟練運算是關鍵,是基礎題.16、【解題分析】

三棱錐的底面邊長和側棱長都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點到平面的距離;,可得點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑,即可求出結論.【題目詳解】邊長為,則中線長為,點到平面的距離為,點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑.又三棱錐的底面邊長和側棱長都為4,以下求過和的兩個平行平面間距離,分別取中點,連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【題目點撥】本題考查空間中的距離、正四面體的結構特征,考查空間想象能力,屬于較難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),.(2),【解題分析】

(1)利用枚舉法將范數為奇數的二元有序實數對都寫出來,再做和;(2)用組合數表示和,再由公式或將組合數進行化簡,得出最終結果.【題目詳解】解:(1)范數為奇數的二元有序實數對有:,,,,它們的范數依次為1,1,1,1,故,.(2)當n為偶數時,在向量的n個坐標中,要使得范數為奇數,則0的個數一定是奇數,所以可按照含0個數為:1,3,…,進行討論:的n個坐標中含1個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含3個0,其余坐標為1或,共有個,每個的范數為;的n個坐標中含個0,其余坐標為1或,共有個,每個的范數為1;所以,.因為,①,②得,,所以.解法1:因為,所以..解法2:得,.又因為,所以.【題目點撥】本題考查了數列和組合,是一道較難的綜合題.18、(1)見解析(2)【解題分析】

(1)根據菱形性質可知,結合可得,進而可證明,即,即可由線面垂直的判定定理證明平面;(2)結合(1)可證明兩兩互相垂直.即以為坐標原點,的方向為軸正方向,為單位長度,建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可求得二面角的余弦值.【題目詳解】(1)證明:設,連接,如下圖所示:∵側面為菱形,∴,且為及的中點,又,則為直角三角形,,又,,即,而為平面內的兩條相交直線,平面.(2)平面,平面,,即,從而兩兩互相垂直.以為坐標原點,的方向為軸正方向,為單位長度,建立如圖的空間直角坐標系,為等邊三角形,,,,設平面的法向量為,則,即,∴可取,設平面的法向量為,則.同理可取,由圖示可知二面角為銳二面角,∴二面角的余弦值為.【題目點撥】本題考查了線面垂直的判定方法,利用空間向量方法求二面角夾角的余弦值,注意建系時先證明三條兩兩垂直的直線,屬于中檔題.19、(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點為線段的中點.【解題分析】

(Ⅰ)連結,,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標系,平面法向量為,平面的法向量,計算夾角得到答案.(Ⅲ)設,計算,,根據垂直關系得到答案.【題目詳解】(Ⅰ)連結,,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標系,則,,,,設平面法向量為,則,連結,可得,又所以,平面,平面的法向量,設二面角的平面角為,則.(Ⅲ)線段上存在點使得,設,,,,所以點為線段的中點.【題目點撥】本題考查了線面平行,二面角,根據垂直關系確定位置,意在考查學生的計算能力和空間想象能力.20、(1)(2)最大值為【解題分析】

(1)利用消去參數,求得曲線的普通方程,再轉化為極坐標方程.(2)設出兩點的坐標,求得的表達式,并利用三角恒等變換進行化簡,再結合三角函數最值的求法,求得的最大值.【題目詳解】(1)由消去得曲線的普通方程為.所以的極坐標方程為,即.(2)不妨設,,,,,則當時,取得最大值,最大值為.【題目點撥】本小題主要考查參數方程化為普通方程,普通方程化為極坐標方程,考查極坐標系下線段長度的乘積的最值的求法,考查三角恒等變換,考查三角函數最值的求法,屬于中檔題.21、(1)(2)或.【解題分析】

(1)圓的方程已知,根據條件列出方程組,解方程即得;(2)設,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論