北京市西城區第四十四中學2024屆高三收心考試數學試題_第1頁
北京市西城區第四十四中學2024屆高三收心考試數學試題_第2頁
北京市西城區第四十四中學2024屆高三收心考試數學試題_第3頁
北京市西城區第四十四中學2024屆高三收心考試數學試題_第4頁
北京市西城區第四十四中學2024屆高三收心考試數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市西城區第四十四中學2024屆高三收心考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.2.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.3.若,則“”是“的展開式中項的系數為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件4.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.5.設為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件6.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.7.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.8.已知函數,若函數在上有3個零點,則實數的取值范圍為()A. B. C. D.9.若向量,則()A.30 B.31 C.32 D.3310.設函數,則,的大致圖象大致是的()A. B.C. D.11.圓心為且和軸相切的圓的方程是()A. B.C. D.12.若復數,則()A. B. C. D.20二、填空題:本題共4小題,每小題5分,共20分。13.如圖在三棱柱中,,,,點為線段上一動點,則的最小值為________.14.已知數列的各項均為正數,記為的前n項和,若,,則________.15.在的展開式中,項的系數是__________(用數字作答).16.在平面直角坐標系中,點在單位圓上,設,且.若,則的值為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數),以原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程與曲線的直角坐標方程;(2)設為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.18.(12分)某市調硏機構對該市工薪階層對“樓市限購令”態度進行調查,抽調了50名市民,他們月收入頻數分布表和對“樓市限購令”贊成人數如下表:月收入(單位:百元)頻數51055頻率0.10.20.10.1贊成人數4812521(1)若所抽調的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調查者中隨機選取2人進行追蹤調查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數學期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據表格數據,判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結果.19.(12分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.20.(12分)已知函數.(1)討論的單調性;(2)若函數在區間上的最小值為,求m的值.21.(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設,,,且滿足.(1)求;(2)若,,求的最大值.22.(10分)已知中,角所對邊的長分別為,且(1)求角的大小;(2)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】

取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【題目詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最小.此時由面,可知為等腰直角三角形,,故.故選:D【題目點撥】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.2、C【解題分析】

設M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據中位線定理,結合余弦定理求出和的余弦值再求其正弦值即可.【題目詳解】根據題意畫出圖形:設M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【題目點撥】此題考查異面直線夾角,關鍵點通過平移將異面直線夾角轉化為同一平面內的夾角,屬于較易題目.3、B【解題分析】

求得的二項展開式的通項為,令時,可得項的系數為90,即,求得,即可得出結果.【題目詳解】若則二項展開式的通項為,令,即,則項的系數為,充分性成立;當的展開式中項的系數為90,則有,從而,必要性不成立.故選:B.【題目點撥】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.4、D【解題分析】

根據點差法得,再根據焦點坐標得,解方程組得,,即得結果.【題目詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯立,解得,,故所求雙曲線的方程為.故選D.【題目點撥】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.5、A【解題分析】

根據向量共線的性質依次判斷充分性和必要性得到答案.【題目詳解】若,則與共線,且方向相同,充分性;當與共線,方向相反時,,故不必要.故選:.【題目點撥】本題考查了向量共線,充分不必要條件,意在考查學生的推斷能力.6、C【解題分析】

設射線OA與x軸正向所成的角為,由三角函數的定義得,,,利用輔助角公式計算即可.【題目詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【題目點撥】本題考查正弦型函數的最值問題,涉及到三角函數的定義、輔助角公式等知識,是一道容易題.7、D【解題分析】

整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【題目詳解】由題,,因為純虛數,所以,則,故選:D【題目點撥】本題考查已知復數的類型求參數范圍,考查復數的除法運算.8、B【解題分析】

根據分段函數,分當,,將問題轉化為的零點問題,用數形結合的方法研究.【題目詳解】當時,,令,在是增函數,時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數的取值范圍為綜上可得實數的取值范圍為,故選:B【題目點撥】本題主要考查了函數的零點問題,還考查了數形結合的思想和轉化問題的能力,屬于中檔題.9、C【解題分析】

先求出,再與相乘即可求出答案.【題目詳解】因為,所以.故選:C.【題目點撥】本題考查了平面向量的坐標運算,考查了學生的計算能力,屬于基礎題.10、B【解題分析】

采用排除法:通過判斷函數的奇偶性排除選項A;通過判斷特殊點的函數值符號排除選項D和選項C即可求解.【題目詳解】對于選項A:由題意知,函數的定義域為,其關于原點對稱,因為,所以函數為奇函數,其圖象關于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【題目點撥】本題考查利用函數的奇偶性和特殊點函數值符號判斷函數圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數值符號是求解本題的關鍵;屬于中檔題、常考題型.11、A【解題分析】

求出所求圓的半徑,可得出所求圓的標準方程.【題目詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【題目點撥】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎題.12、B【解題分析】

化簡得到,再計算模長得到答案.【題目詳解】,故.故選:.【題目點撥】本題考查了復數的運算,復數的模,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

把繞著進行旋轉,當四點共面時,運用勾股定理即可求得的最小值.【題目詳解】將以為軸旋轉至與面在一個平面,展開圖如圖所示,若,,三點共線時最小為,為直角三角形,故答案為:【題目點撥】本題考查了空間幾何體的翻折,平面內兩點之間線段最短,解直角三角形進行求解,考查了空間想象能力和計算能力,屬于中檔題.14、127【解題分析】

已知條件化簡可化為,等式兩邊同時除以,則有,通過求解方程可解得,即證得數列為等比數列,根據已知即可解得所求.【題目詳解】由..故答案為:.【題目點撥】本題考查通過遞推公式證明數列為等比數列,考查了等比的求和公式,考查學生分析問題的能力,難度較易.15、【解題分析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數.16、【解題分析】

根據三角函數定義表示出,由同角三角函數關系式結合求得,而,展開后即可由余弦差角公式求得的值.【題目詳解】點在單位圓上,設,由三角函數定義可知,因為,則,所以由同角三角函數關系式可得,所以故答案為:.【題目點撥】本題考查了三角函數定義,同角三角函數關系式的應用,余弦差角公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)面積的最小值為;四邊形的面積為【解題分析】

(1)將曲線消去參數即可得到的普通方程,將,代入曲線的極坐標方程即可;(2)由(1)得曲線的極坐標方程,設,,,利用方程可得,再利用基本不等式得,即可得,根據題意知,進而可得四邊形的面積.【題目詳解】(1)由曲線的參數方程為(為參數)消去參數得曲線的極坐標方程為,即,所以,曲線的直角坐標方程.(2)依題意得的極坐標方程為設,,,則,,故,當且僅當(即)時取“=”,故,即面積的最小值為.此時,故所求四邊形的面積為.【題目點撥】本題考查了極坐標方程化為直角坐標方程、參數方程化為普通方程、點到直線的距離公式、三角函數的單調性,考查了推理能力與計算能力,屬于中檔題.18、(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.【解題分析】

(1)由頻率和為可知,根據求得,從而計算得到頻數,補全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應的概率,由此得到分布列;根據數學期望的計算公式可求得期望;(3)根據中不贊成比例最大可知來自的可能性最大.【題目詳解】(1)由頻率分布表得:,即.收入在的有名,,,,則頻率分布直方圖如下:(2)收入在中贊成人數為,不贊成人數為,可能取值為,則;;,的分布列為:.(3)來自的可能性更大.【題目點撥】本題考查概率與統計部分知識的綜合應用,涉及到頻數、頻率的計算、頻率分布直方圖的繪制、服從于超幾何分布的隨機變量的分布列與數學期望的求解、統計估計等知識;考查學生的運算和求解能力.19、(1)乙的技術更好,見解析(2)①,;②【解題分析】

(1)列出分布列,求出期望,比較大小即可;(2)①直接根據概率的意義可得P0,P8;②設每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數列,根據可得答案.【題目詳解】(1)記甲乙各生產一件零件給工廠帶來的效益分別為元、元,隨機變量,的分布列分別為10521052所以,,所以,即乙的技術更好(2)①表示的是甲得分時,甲最終獲勝的概率,所以,表示的是甲得4分時,甲最終獲勝的概率,所以;②設每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時,最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數列,則,即決賽甲獲勝的概率是.【題目點撥】本題考查離散型隨機變量的分布列和期望,考查數列遞推關系的應用,是一道難度較大的題目.20、(1)見解析(2)【解題分析】

(1)先求導,再對m分類討論,求出的單調性;(2)對m分三種情況討論求函數在區間上的最小值即得解.【題目詳解】(1)若,當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論