




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中英文對照外文翻譯(文檔含英文原文和中文翻譯)CrystallizationBehaviorsofLinearandLongChainBranchedPolypropyleneABSTRACT:Thenonisothermalcrystallizationkineticsoflinearandlongchainbranchedpolypropylene(LCBPP)wereinvestigatedbydifferentialscanningcalorimetry(DSC)atvariouscoolingrates.SeveralmethodssuchasAvrami,Ozawa,andJeziornywereappliedtodescribethecrystallizationprocessoflinearPPandLCBPPswithdifferentLCBlevelundernonisothermalconditions.Thevaluesoft1/2,Zc,andF(T)showthatLCBhastheroleofheterogeneousnucleatingagentandacceleratesthecrystallizationprocessofPP.Moreover,theKissingermethodwasusedtoevaluatetheactivationenergyoflinearPPandLCBPPs.TheresultshowsthattheactivationenergyofLCBPPsarehigherthanthatoflinearPP,indicatingthatthepresenceofLCBbafflesthetransferofmacromolecularsegmentsfromPPmelttothecrystalgrowthsurface.Furthermore,thecrystalmorphologyoflinearPPandLCBPPswasobservedthroughpolarizedopticalmicroscopy(POM),andfinespheruliteswereobservedforLCBPPs.Keywords:polypropylene;longchainbranch;nonisothermalcrystallization;kineticINTRODUCTIONIsotacticpolypropylene(iPP)hasmanydesirableandbeneficialphysicalpropertiessuchaslowdensity,highmeltingpoint,andchemicalresistance.Therefore,iPPhasbeenusedwidelyinindustrialandcommercialapplications.However,iPPisalinearpolymer,asaresult,itexhibitslowmeltstrengthandnostrainhardeningbehaviorinthemeltstate,whichlimitsitsuseinapplicationssuchasthermoforming,foaming,andblowmolding.ThemosteffectivemethodtoimprovethemeltstrengthofPPistointroducelongchainbranching(LCB)ontothePPbackbone.TherehasbeenconsiderableinterestintherelationshipsbetweenLCBmoleculararchitectureandrheologicalbehaviorofPPintherecentyears.ThechangeofmoleculararchitecturecanaffectnotonlyrheologicalpropertybutalsocrystallizationpropertyofPP.However,thecrystallizationbehavioroflinearandlongchainbranchedpolypropylene(LCBPP)hasseldombeenstudiedindetail.TherehavemanystudiesonthecrystallizationofgraftedPP.ItiswidelyacceptedthatgraftedPPpartlyactsasanucleatingagentforthematrixandacceleratesthecrystallizationrate.speculatedthatthedifferentcrystallizationbehaviorbetweenPP-g-MAandPPisduetoachaininteraction,suchashydrogenbondingbetweenhydrolyzedmaleicanhydridegroups.ThereisnospecificdefinitionaboutLCB,however,fromrheologicalviewpoint,thelengthnecessaryforabranchtobehaveasalongchainbranchis2Me(Memolecularweightbetweenentanglements).Therefore,themoleculararchitecturesforgratedPPandLCBPPareverydifferent.Asaresult,thecrystallizationbehaviorandcrystalmorphologyofLCBPPwillbedifferentfromlinearPPorgraftedPP.ItcanbeconcludedfromlimitedliteraturesthatLCBPPhashighercrystallizationtemperature,shortercrystallizationtime,andbroadermeltingrangewhencomparedwithlinearPP.
Inourpreviousstudy,LCBPPswithdifferentLCBlevelwerepreparedbymeltgraftinginthepresenceofperoxideandpolyfunctionalmonomer,andtheirlinearviscoelasticpropertieswerealsostudied.ThepurposeofthisarticleistoinvestigatethenonisothermalcrystallizationkineticsofLCBPPswithdifferentLCBlevelcomparedwithlinearPP.Severalnonisothermalcrystallizationkineticequationswereused.Thenecessarydatawereobtainedfromdifferentialscanningcalorimetry(DSC)thermogram.ThekineticparameterssuchastheOzawaexponentandtheactivationenergieswerecalculated.Inaddition,thecrystalmorphologyoflinearPPandLCBPPswasalsostudiedbypolarizedopticalmicroscopy(POM).SamplepreparationLCBPPswithdifferentLCBlevelwerepreparedbymeltinggraftinginthepresenceof2,5-dimethyl-2,5(tbutylperoxy)hexaneperoxideandpentaerythritoltriacrylate(PETA)polyfunctionalmonomerinmixerat1808C;thedetailsofthepreparationprocessandcharacterizationbyrheologymethodswerediscussedinRef.15.Theformulation,zero-shearviscosity,andLCBlevelofsampleswerelistedinTableI,whereZ0andLCB/104Cweredeterminedbyrheologymethod.LCBlevelofD3cannotbecalculatedaccuratelybecauseitslongerrelaxationtimeislargerthanthemaximumrelaxationtimethatcanbedeterminedfromourexperiments.However,itcanbeconfirmedthatLCBlevelofD3ishigherthanthatofD2.DifferentialscanningcalorimetryThermalanalysisofthesampleswascarriedoutwithadifferentialscanningcalorimeter(DSC)instrumentundernitrogenatmosphere.Tostudythecrystallizationandmeltingbehaviors,thesamplesabout4mgweremeltedat2008Cfor5mintoeliminatethermalhistory,followedbycoolingatarateof108C/minandthecrystallizationthermogramwasmeasured.Thetemperatureofpeakswastakenasthecrystallizationtemperature,Tc.Assoonasthetemperaturereached508C,itwasreheatedagainatarateof108C/minandthemeltingthermogramwasmeasured.Theprocedurefornonisothermalcrystallizationwasasfollows:thesamplesweremeltedat200Cfor5mintoeliminatethermalhistory,andthencooledtoroomtemperatureat5,10,20,30,and40oc/min,respectively.TheexothermalcurvesofheatflowasafunctionoftemperaturewererecordedtoanalyzethenonisothermalcrystallizationprocessofPPandLCBPPs.PolarizedopticalmicroscopyAsamplewassandwichedbetweentwomicroscopecoverglasses,meltedat2008Cfor5mintoeliminatethermalhistory,andthencooledtoroomtemperatureat208C/min.RESULTSANDDISCUSSIONCrystallizationandmeltingbehaviorofPPandLCBPPsFigure1(a,b)showscoolingandheatingthermogramsofPPandLCBPPs,andthecorrespondingcrystallizationandmeltingparametersdeterminedfromFigure1aregiveninTableII.ItcanbeseenfromcoolingthermogramsinFigure1(a)thatthecrystallizationtemperatures(Tc)ofLCBPPsarehigherthanthatofPP.AsshowninTableII,TcofPPis115.38CandTcofD1,D2,andD3is130.8,132.0,and132.18C,respectively.ItisclearthatthepresenceofLCBstructuremakesTcofPPimprovemorethan158C,however,TcincreasesslightlywithLCBlevel.Furthermore,incaseofLCBPPs,asmallshoulderonthecoolingthermogramscanbeobserved.ItcanbebelievedthattheshoulderrelatedtothepresenceofLCBstructure,whichwillbediscussedlater.ThesubsequentreheatingthermogramsofPPandLCBPPsareshowninFigure1(b).Themeltingtemperature(Tm)andtheenthalpiesoffusion(DHm)arealsolistedinTableII.ItcanbeseenthatthethermogramsforPPandLCBPPsallshowedsinglemeltingpeak.TmofLCBPPsshifttohighertemperaturecomparedwiththatofPP,moreover,theshapeofmeltingpeaksforLCBPPsisbroaderthanthatofPP,whichsuggeststhatthecrystallinesofPParemoreperfectthanthatofLCBPPs.ThecrystallinityofPPcanbedeterminedfromheatingscansusingthefollowingequations:ThecrystallinityofPPandLCBPPswascalculatedbyeq.(1)andthedatawerelistedinTableII.AsshowninTableII,thecrystallinityofLCBPPsishigherthanthatofPP,indicatingthatthebranchedchainscanactasanucleatingagentandhelptoincreasethecrystallinityofPP.NonisothermalcrystallizationbehaviorofPPandLCBPPsFigure1showsthenonisothermalcrystallizationexothermalcurvesofPPandLCBPP(sampleD2)atdifferentcoolingrates.Someusefulparameterssuchastheonsetcrystallizationtemperature(To),thepeaktemperature(Tp),andtheendcrystallizationtemperature(Te)canbeobtainedfromthesecurves,andthevalueswerelistedinTableIII.Asexpected,theexothermicpeakshiftedtolowertemperatureandbecamebroaderwithcoolingrateincreasingforallsamples.AsshowninTableIII,TpofLCBPPsishigherthanthatofPPatgivencoolingrate,indicatingthatthecrystallizationrateincreasedandthedegreeofsupercoolingrequiredforthecrystallizationreducedwhenLCBwasintroducedontoPPbackbone.Moreover,atthegivencoolingrate,TpincreasedslightlywithLCBlevelincreasing;however,italmostdoesnotchangeagainwhenLCBlevelachievedagivenvalue,i.e.,D2.Inaddition,asmallshoulderappearedontheLCBPPscoolingcurvesatlowertemperatureandbecameunconspicuouswiththeincreasingcoolingrate.Toourknowledge,thisphenomenonwasnotreportedinotherlinear,grafted,orbranchedpolymers.Theexactreasonwasnotknown,butitcanbecertainthattheshoulderisrelatedtothepresenceofLCBstructure,whichinfluencesthecrystallizationkineticprocessofPP.Thisphenomenonwillbediscussedinfollowinganalysisofnonisothermalcrystallizationkineticparameters.ObservationofcrystalmorphologybyPOMThecrystalmorphologyofPPandLCBPPswasobservedthroughPOM.Figure9showsthepolarizedmicrographsofPPandLCBPPsnonisothermalcrystallizedatacoolingrateof208C/min.ThelinearPPshowswell-definedspheruliteswitha‘‘Maltesecross’’structure,whereasLCBPPsshowmorenucleationsitesandverytinycrystallites,indicatingthatLCBstructureactsasanucleatingagent.ItcanbeobservedthattheintroducingofLCBacceleratedthenucleation,buttheradialgrowthrateofthespherulitesdecreased.Thisobservationagreeswiththeanalysisaboutnonisothermalkineticparameters.Ontheotherhand,itwasobservedthatthespheruliticdevelopmentofPParisefromsporadicnucleation,whilethatofLCBPParisefrominstantaneousnucleation.Homogeneousnucleationstartsspontaneouslybychainaggregationbelowthemeltingpoint,whichrequiresalongertime,whereasheterogeneousnucleationformssimultaneouslyassoonasthesamplereachesthecrystallizationtemperature.23Consideringtheabove-mentionedkineticanalysis,itcanbeconcludedthatLCBPPcrystallizesmainlyviaheterogeneousnucleation,whilePPcrystallizesviabothheterogeneousnucleationandhomogeneousnucleation.CONCLUSIONSThenonisothermalcrystallizationkineticsoflinearPPandLCBPPswereinvestigatedsystematicallybytheDSCtechnique.Theresultsshowthatatvariouscoolingrates,theexothermicpeaksofLCBPPsdistinctlyshiftedtohighertemperaturescomparedwiththatoflinearPP.TheAvrami,Jeziorny,Ozawa,andMomethodscandescribethenonisothermalcrystallizationprocessoflinearPPandLCBPPverywell.TheAvramiexponentnofLCBPPsissmallerthanthatoflinearPPatvariouscoolingrate,indicatingthattheintroducingofLCBinfluencesthemechanismofnucleationandthegrowthofPP,moreover,thecoolingratehasweakeffectonthevalueofnforLCBPPscomparedtolinearPP.ThevalueofZcforLCBPPsishigherthanthatforlinearPPandthevalueoft1/2forLCBPPsislowerthanthatforlinearPP,suggestingthatthebrancheshavetheroleofheterogeneousnucleatingagentandacceleratedthecrystallizationprocess.TheactivationenergyDEoflinearPPandLCBPPswascalculatedusingKissingermethod.TheresultshowsthatthevaluesofDEforLCBPPsarehigherthanthatforPP,indicatingthatthepresenceofLCBbaffledthetransferofmacromolecularsegmentsfromPPmelttothecrystalgrowthsurface.Moreover,thevalueofDEdecreaseslightlywithLCBlevelincreasing.ThecrystalmorphologyofPPandLCBPPswasobservedthroughPOM.TheresultsshowthatthespherulitesofLCBPPsaremuchsmallerthanthatofPP,indicatingthatLCBstructureactsasnucleatingagent.
線性和長鏈支化聚丙烯的結晶行為摘要:線性和長鏈支化聚丙烯的非等溫結晶動力學(LCBPP)在不同冷卻速率下進行了差示掃描量熱法(DSC)。有幾種方法,比如阿夫拉米,小澤一郎和Jeziorny描述線性PP的結晶過程和LCBPPs在非等溫條件下的不同LCB水平。而t1/2和F(T)的值表明,LCB異質成核劑的作用,加速PP的結晶過程。此外,基辛格的方法被用來評估線性PP和LCBPPs的活化能。結果表明,LCBPPs的活化能高于線性頁,LCB擋板的存在從PP熔體高分子領域的轉移到晶體生長的表面。此外,線性PP和LCBPPs的晶體結構是通過偏振光學顯微鏡觀察(POM)和細觀察LCBPP球晶得來的。關鍵詞:聚丙烯、長鏈分支、非等溫結晶動力學簡介等規聚丙烯(iPP)有許多可取的和有益的物理特性,如低密度、高熔點、耐化學性。因此,iPP已經廣泛應用于工業和商業應用。然而,iPP是線型高分子,因此,它不顯示在融化狀態下的低熔體強度和應變硬化行為,這限制了它的使用在應用程序如熱成型、發泡、吹塑。最有效的方法來改善PP的熔體強度是引入長鏈分支(LCB)到PP骨干。近年來對LCB分子結構之間的關系和PP的流變行為有相當大的興趣。分子結構的變化不僅會影響流變性質也影響PP的結晶屬性。然而,線性和長鏈支化聚丙烯的結晶行為(LCBPP)很少被詳細研究。有許多研究是關于接枝PP的結晶。人們普遍認為接枝PP部分矩陣作為成核劑能夠加速結晶率。推測PP-g-MA和PP之間的不同的結晶行為是由于鏈相互作用,如氫鍵之間水解馬來酸酐組。對LCB沒有具體的定義,然而,從流變學的觀點來看,一個分支行為所需的長度作為一個長鏈分支2Me。因此,PP碎片的分子結構和LCBPP是非常不同的。因此,LCBPP的結晶行為和結晶形態不同于線性聚丙烯或接枝PP。它可以從有限的文獻總結得知,LCBPP的結晶溫度高,結晶時間短,與線性PP相比有更廣泛的范圍融化。在我們先前的研究中,LCBPPs與LCB不同的水平是由于融化嫁接在過氧化氫的存在和多官能團單體決定的,同時對線性粘彈性性能也進行了研究。本文的目的是調查的非等溫結晶動力學LCBPPs和不同水平的LCB與幾種非等溫結晶動力學方程的線性關系。從差示掃描量熱法(DSC)熱法得到必要的數據。以及小澤等動力學參數指數和激活能量的計算。此外,也研究了線性PP的晶體結構和LCBPPs偏振光學顯微鏡(POM)。樣品制備LCBPPs與不同水平的LCB被融化嫁接前的準備,將tbutylperoxy,己烷和季戊四醇,PETA多官能單體在180oc混合器中混合;制備過程的細節和特征流變學方法過討論了,zero-shear粘度、和LCB水平的樣本是列在表一。LCBD3水平無法準確計算,因為它再弛豫時間大于最大弛豫時間可以確定從我們的實驗。然而,它可以證實,LCBD3水平是高于D2。差示掃描量熱法在氮氣環境中對熱分析的樣品進行了差示掃描量熱計(DSC)儀器。研究結晶和熔融行為,4毫克樣品在200oc下大約融化5分鐘,消除熱歷史,緊隨其后的是10oc/分鐘的速度的冷卻和結晶熱法的測量。溫度峰值作為結晶溫度,Tc。當溫度達到50攝氏度時,它又以10oc/分鐘的速度進行加熱和熔化熱法的測量。非等溫結晶的過程如下:樣本用5分鐘在200oc下融化來消除熱歷史,然后在5、10、20、30和40oc/分鐘分別冷卻到室溫。熱流的放熱曲線作為溫度的函數記錄分析聚丙烯的非等溫結晶過程和LCBPPs。偏振光學顯微鏡線性PP和LCBPPs的晶體結構研究用偏光顯微鏡。樣本被夾在兩個顯微鏡蓋眼鏡,用5分鐘在200oc下融化來消除熱歷史,然后以20oc/分鐘冷卻到室溫。結果與討論PP的結晶和熔融行為和LCBPPs圖1(a,b)顯示PP和LCBPPs冷卻和加熱溫譜圖,相應的結晶和熔融參數在表二與圖1給出決定。從冷卻熱分析圖可以看出圖1(a),LCBPPs的結晶溫度(Tc)是高于PP。如表二所示,PP的Tc是115.3oc而D1、D2、D3分別是130,132和132.1oc,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部門管理工作計劃
- 銀行業營銷分享
- 2025年鄉村醫生考試題庫:常見疾病診療實驗室檢查試題
- 2025年注冊會計師《會計》特殊業務會計處理實戰模擬試題
- 2025年大學輔導員心理危機干預心理援助考試題庫
- 2025年房地產經紀人職業資格考試模擬試卷:房地產市場營銷策略案例分析
- 2025年寵物訓導師職業能力測試卷:寵物訓導師寵物食品市場拓展與渠道建設試題
- 2025年鄉村醫生考試:農村醫療衛生服務體系信息化建設試題
- 2025年日語N2水平測試模擬試卷:詞匯記憶策略與實際運用試題
- 2025年PMP項目管理專業人士資格考試模擬試卷(項目人力資源管理)
- GB/T 12723-2024單位產品能源消耗限額編制通則
- 2024年貴州客運從業資格證需要什么條件
- 2024年中國家具浸漬紙市場調查研究報告
- 大學美育學習通超星期末考試答案章節答案2024年
- 2024年版《輸變電工程標準工藝應用圖冊》
- 2024年大學生信息素養大賽(校賽)培訓考試題庫(含答案)
- 1 水到哪里去了(教案)-2024-2025學年科學三年級上冊教科版
- 遼寧大連歷年中考語文現代文之記敘文閱讀10篇(含答案)(2003-2023)
- 深海組網技術調研
- 教科版科學三年級下冊《 直線運動和曲線運動 》課件
- DL∕T 5210.2-2018 電力建設施工質量驗收規程 第2部分:鍋爐機組
評論
0/150
提交評論