浙江省寧波鄞州區五校聯考2024屆中考二模數學試題含解析_第1頁
浙江省寧波鄞州區五校聯考2024屆中考二模數學試題含解析_第2頁
浙江省寧波鄞州區五校聯考2024屆中考二模數學試題含解析_第3頁
浙江省寧波鄞州區五校聯考2024屆中考二模數學試題含解析_第4頁
浙江省寧波鄞州區五校聯考2024屆中考二模數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省寧波鄞州區五校聯考2024年中考二模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將△ABC沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠DOF=142°,則∠C的度數為()A.38° B.39° C.42° D.48°2.為了節約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費;②年用水量不超過240m1的該市居民家庭按第三檔水價交費;③該市居民家庭年用水量的中位數在150~180m1之間;④該市居民家庭年用水量的眾數約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④3.如圖,菱形OABC的頂點C的坐標為(3,4),頂點A在x軸的正半軸上.反比例函數(x>0)的圖象經過頂點B,則k的值為A.12 B.20 C.24 D.324.已知關于x的一元二次方程x2+mx+n=0的兩個實數根分別為x1=2,x2=4,則m+n的值是()A.﹣10 B.10 C.﹣6 D.25.某班將舉行“慶祝建黨95周年知識競賽”活動,班長安排小明購買獎品,如圖是小明買回獎品時與班長的對話情境:請根據如圖對話信息,計算乙種筆記本買了()A.25本 B.20本 C.15本 D.10本6.已知反比例函數y=-2A.圖象必經過點(﹣1,2) B.y隨x的增大而增大C.圖象在第二、四象限內 D.若x>1,則0>y>-27.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數據:)A.30.6米 B.32.1米 C.37.9米 D.39.4米8.下列運算正確的是()A.a2+a3=a5 B.(a3)2÷a6=1 C.a2?a3=a6 D.(2+3)2=59.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.10.滴滴快車是一種便捷的出行工具,計價規則如下表:計費項目

里程費

時長費

遠途費

單價

1.8元/公里

0.3元/分鐘

0.8元/公里

注:車費由里程費、時長費、遠途費三部分構成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元.

小王與小張各自乘坐滴滴快車,行車里程分別為6公里與8.5公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘二、填空題(本大題共6個小題,每小題3分,共18分)11.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.12.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____.13.若一組數據1,2,3,的平均數是2,則的值為______.14.如圖,△ABC中,AB=6,AC=4,AD、AE分別是其角平分線和中線,過點C作CG⊥AD于F,交AB于G,連接EF,則線段EF的長為_____.15.若不等式(a+1)x>a+1的解集是x<1,則a的取值范圍是_________.16.對于函數y=,當函數y﹤-3時,自變量x的取值范圍是____________.三、解答題(共8題,共72分)17.(8分)我市正在創建“全國文明城市”,某校擬舉辦“創文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.A、B兩種獎品每件各多少元?現要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?18.(8分)某中學九年級甲、乙兩班商定舉行一次遠足活動,、兩地相距10千米,甲班從地出發勻速步行到地,乙班從地出發勻速步行到地.兩班同時出發,相向而行.設步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數關系圖象如圖所示,根據圖象解答下列問題:直接寫出、與的函數關系式;求甲、乙兩班學生出發后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?19.(8分)某地一路段修建,甲隊單獨完成這項工程需要60天,若由甲隊先做5天,再由甲、乙兩隊合作9天,共完成這項工程的三分之一.(1)求甲、乙兩隊合作完成這項工程需要多少天?(2)若甲隊的工作效率提高20%,乙隊工作效率提高50%,甲隊施工1天需付工程款4萬元,乙隊施工一天需付工程款2.5萬元,現由甲乙兩隊合作若干天后,再由乙隊完成剩余部分,在完成此項工程的工程款不超過190萬元的條件下要求盡早完成此項工程,則甲、乙兩隊至多要合作多少天?20.(8分)如圖,在△ABC中,點D,E分別在邊AB,AC上,∠AED=∠B,射線AG分別交線段DE,BC于點F,G,且.求證:△ADF∽△ACG;若,求的值.21.(8分)計算:解不等式組,并寫出它的所有整數解.22.(10分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發放,早餐一人一份,一份兩樣,一樣一個.(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.23.(12分)如圖,?ABCD中,點E,F分別是BC和AD邊上的點,AE垂直平分BF,交BF于點P,連接EF,PD.求證:平行四邊形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.24.請你僅用無刻度的直尺在下面的圖中作出△ABC的邊AB上的高CD.如圖①,以等邊三角形ABC的邊AB為直徑的圓,與另兩邊BC、AC分別交于點E、F.如圖②,以鈍角三角形ABC的一短邊AB為直徑的圓,與最長的邊AC相交于點E.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】分析:根據翻折的性質得出∠A=∠DOE,∠B=∠FOE,進而得出∠DOF=∠A+∠B,利用三角形內角和解答即可.詳解:∵將△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故選A.點睛:本題考查了三角形內角和定理、翻折的性質等知識,解題的關鍵是靈活運用這些知識解決問題,學會把條件轉化的思想,屬于中考常考題型.2、B【解題分析】

利用條形統計圖結合中位數和中位數的定義分別分析得出答案.【題目詳解】①由條形統計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),

×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費,正確;

②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),

∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費,故此選項錯誤;

③∵5萬個數據的中間是第25000和25001的平均數,

∴該市居民家庭年用水量的中位數在120-150之間,故此選項錯誤;

④該市居民家庭年用水量為110m1有1.5萬戶,戶數最多,該市居民家庭年用水量的眾數約為110m1,因此正確,

故選B.【題目點撥】此題主要考查了頻數分布直方圖以及中位數和眾數的定義,正確利用條形統計圖獲取正確信息是解題關鍵.3、D【解題分析】

如圖,過點C作CD⊥x軸于點D,∵點C的坐標為(3,4),∴OD=3,CD=4.∴根據勾股定理,得:OC=5.∵四邊形OABC是菱形,∴點B的坐標為(8,4).∵點B在反比例函數(x>0)的圖象上,∴.故選D.4、D【解題分析】

根據“一元二次方程x2+mx+n=0的兩個實數根分別為x1=2,x2=4”,結合根與系數的關系,分別列出關于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【題目詳解】解:根據題意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1?x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故選D.【題目點撥】本題考查了根與系數的關系,正確掌握根與系數的關系是解決問題的關鍵.5、C【解題分析】

設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意列出關于x、y的二元一次方程組,求出x、y的值即可.【題目詳解】解:設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意,得:,解得:,答:甲種筆記本買了25本,乙種筆記本買了15本.故選C.【題目點撥】本題考查的是二元二次方程組的應用,能根據題意得出關于x、y的二元二次方程組是解答此題的關鍵.6、B【解題分析】試題分析:根據反比例函數y=kx試題解析:A、(-1,2)滿足函數的解析式,則圖象必經過點(-1,2);B、在每個象限內y隨x的增大而增大,在自變量取值范圍內不成立,則命題錯誤;C、命題正確;D、命題正確.故選B.考點:反比例函數的性質7、D【解題分析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.8、B【解題分析】

利用合并同類項對A進行判斷;根據冪的乘方和同底數冪的除法對B進行判斷;根據同底數冪的乘法法則對C進行判斷;利用完全平方公式對D進行判斷.【題目詳解】解:A、a2與a3不能合并,所以A選項錯誤;B、原式=a6÷a6=1,所以A選項正確;C、原式=a5,所以C選項錯誤;D、原式=2+26+3=5+26,所以D選項錯誤.故選:B.【題目點撥】本題考查同底數冪的乘除、二次根式的混合運算,:二次根式的混合運算先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.解題關鍵是在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.9、A【解題分析】

設黃球有x個,根據摸出一個球是藍球的概率是,得出黃球的個數,再根據概率公式即可得出隨機摸出一個黃球的概率.【題目詳解】解:設袋子中黃球有x個,根據題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【題目點撥】此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數與總情況數之比.得到所求的情況數是解決本題的關鍵.10、D【解題分析】

設小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據計價規則計算出小王的車費和小張的車費,建立方程求解.【題目詳解】設小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【題目點撥】本題考查列方程解應用題,讀懂表格中的計價規則是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解題分析】

根據(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【題目詳解】∵a1-b1=8,

∴(a+b)(a-b)=8,

∵a+b=4,

∴a-b=1,

故答案是:1.【題目點撥】考查了平方差,關鍵是掌握(a+b)(a-b)=a1-b1.12、1:1【解題分析】

根據矩形性質得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【題目詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點,∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【題目點撥】本題考查了矩形的性質和判定,三角形的面積,主要考查學生的推理能力.13、1【解題分析】

根據這組數據的平均數是1和平均數的計算公式列式計算即可.【題目詳解】∵數據1,1,3,的平均數是1,∴,解得:.故答案為:1.【題目點撥】本題考查了平均數的定義,根據平均數的定義建立方程求解是解題的關鍵.14、1【解題分析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,則BG=AB?AG=6?4=2.又∵BE=CE,∴EF是△BCG的中位線,∴EF=BG=1.故答案是:1.15、a<﹣1【解題分析】不等式(a+1)x>a+1兩邊都除以a+1,得其解集為x<1,∴a+1<0,解得:a<?1,故答案為a<?1.點睛:本題主要考查解一元一次不等式,解答此題的關鍵是掌握不等式的性質,再不等式兩邊同加或同減一個數或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個正數或式子,不等號的方向不變,在不等式的兩邊同乘或同除一個負數或式子,不等號的方向改變.16、-<x<0【解題分析】

根據反比例函數的性質:y隨x的增大而減小去解答.【題目詳解】解:函數y=中,y隨x的增大而減小,當函數y﹤-3時又函數y=中,故答案為:-<x<0.【題目點撥】此題重點考察學生對反比例函數性質的理解,熟練掌握反比例函數性質是解題的關鍵.三、解答題(共8題,共72分)17、(1)A種獎品每件16元,B種獎品每件4元.(2)A種獎品最多購買41件.【解題分析】【分析】(1)設A種獎品每件x元,B種獎品每件y元,根據“如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)設A種獎品購買a件,則B種獎品購買(100﹣a)件,根據總價=單價×購買數量結合總費用不超過900元,即可得出關于a的一元一次不等式,解之取其中最大的整數即可得出結論.【題目詳解】(1)設A種獎品每件x元,B種獎品每件y元,根據題意得:,解得:,答:A種獎品每件16元,B種獎品每件4元;(2)設A種獎品購買a件,則B種獎品購買(100﹣a)件,根據題意得:16a+4(100﹣a)≤900,解得:a≤,∵a為整數,∴a≤41,答:A種獎品最多購買41件.【題目點撥】本題考查了一元一次不等式的應用以及二元一次方程組的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據不等關系,正確列出不等式.18、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解題分析】

(1)由圖象直接寫出函數關系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【題目詳解】(1)根據圖可以得到甲2.5小時,走1千米,則每小時走4千米,則函數關系是:y1=4x,乙班從B地出發勻速步行到A地,2小時走了1千米,則每小時走5千米,則函數關系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設甲、乙兩班學生出發后,x小時相遇,則4x+5x=1,解得x=.當x=時,y2=?5×+1=,∴相遇時乙班離A地為km.(3)甲、乙兩班首次相距4千米,即兩班走的路程之和為6km,故4x+5x=6,解得x=h.∴甲、乙兩班首次相距4千米時所用時間是h.19、(1)甲、乙兩隊合作完成這項工程需要36天;(2)甲、乙兩隊至多要合作7天【解題分析】

(1)設甲、乙兩隊合作完成這項工程需要x天,根據條件:甲隊先做5天,再由甲、乙合作9天,共完成總工作量的13(2)設甲、乙兩隊最多合作元天,先求出甲、乙兩隊合作一天完成工程的多少,再根據完成此項工程的工程款不超過190萬元,列出不等式,求解即可得出答案.【題目詳解】(1)設甲、乙兩隊合作完成這項工程需要x天根據題意得,560解得x=36,經檢驗x=36是分式方程的解,答:甲、乙兩隊合作完成這項工程需要36天,(2)1設甲、乙需要合作y天,根據題意得,4+2.5y+2.5×解得y≤7答:甲、乙兩隊至多要合作7天.【題目點撥】本題考查了分式方程的應用和一元一次不等式的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程求解,注意檢驗.20、(1)證明見解析;(2)1.【解題分析】(1)欲證明△ADF∽△ACG,由可知,只要證明∠ADF=∠C即可.(2)利用相似三角形的性質得到,由此即可證明.【解答】(1)證明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.21、(1);(1)0,1,1.【解題分析】

(1)本題涉及零指數冪、負指數冪、特殊角的三角函數值,在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果(1)先求出每個不等式的解集,再求出不等式組的解集,最后再找出整數解即可【題目詳解】解:(1)原式=1﹣1×,=7﹣.(1),解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式組的解集是:﹣1<x≤1.故不等式組的整數解是:0,1,1.【題目點撥】此題考查零指數冪、負指數冪、特殊角的三角函數值,一元一次不等式組的整數解,掌握運算法則是解題關鍵22、(1)不可能;(2).【解題分析】

(1)利用確定事件和隨機事件

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論