福建省泉州市晉江市泉州五中學橋南校區2024屆中考數學模擬預測題含解析_第1頁
福建省泉州市晉江市泉州五中學橋南校區2024屆中考數學模擬預測題含解析_第2頁
福建省泉州市晉江市泉州五中學橋南校區2024屆中考數學模擬預測題含解析_第3頁
福建省泉州市晉江市泉州五中學橋南校區2024屆中考數學模擬預測題含解析_第4頁
福建省泉州市晉江市泉州五中學橋南校區2024屆中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省泉州市晉江市泉州五中學橋南校區2024年中考數學模擬預測題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知圓內接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.2.如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點B旋轉得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為()A. B. C. D.3.如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉180°,得到△BP2C;把△BP2C繞點C順時針旋轉180°,得到△CP3D,依此類推,則旋轉第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)4.下列圖形是軸對稱圖形的有()A.2個 B.3個 C.4個 D.5個5.不等式組的解集為.則的取值范圍為()A. B. C. D.6.某校體育節有13名同學參加女子百米賽跑,它們預賽的成績各不相同,取前6名參加決賽.小穎已經知道了自己的成績,她想知道自己能否進入決賽,還需要知道這13名同學成績的()A.方差B.極差C.中位數D.平均數7.下列選項中,能使關于x的一元二次方程ax2﹣4x+c=0一定有實數根的是()A.a>0 B.a=0 C.c>0 D.c=08.估計﹣1的值為()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間9.下列運算結果是無理數的是()A.3× B. C. D.10.關于x的不等式x-b>0恰有兩個負整數解,則b的取值范圍是A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.函數y=的自變量x的取值范圍為____________.12.如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,連接AC、BD,若S四邊形ABCD=18,則BD的最小值為_________.13.如圖,某商店營業大廳自動扶梯AB的傾斜角為31°,AB的長為12米,則大廳兩層之間的高度為____米.(結果保留兩個有效數字)(參考數據;sin31°=0.515,cos31°=0.857,tan31°=0.601)14.學校乒乓球社團有4名男隊員和3名女隊員,要從這7名隊員中隨機抽取一男一女組成一隊混合雙打組合,可組成不同的組合共有_____對.15.如圖,邊長為6cm的正三角形內接于⊙O,則陰影部分的面積為(結果保留π)_____.16.函數y=中,自變量x的取值范圍為_____.17.如圖,這是由邊長為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個圖形的周長是___.三、解答題(共7小題,滿分69分)18.(10分)已知:二次函數滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數y=ax2+bx的解析式;(2)若當-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.19.(5分)某商場將每件進價為80元的某種商品按每件100元出售,一天可售出100件.后來經過市場調查,發現這種商品單價每降低1元,其銷量可增加10件.(1)若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.求出y與x之間的函數關系式,并求當x取何值時,商場獲利潤最大?20.(8分)已知:正方形繞點順時針旋轉至正方形,連接.如圖,求證:;如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個角,使寫出的每一個角的大小都等于旋轉角.21.(10分)今年3月12日植樹節期間,學校預購進A,B兩種樹苗.若購進A種樹苗3棵,B種樹苗5棵,需2100元;若購進A種樹苗4棵,B種樹苗10棵,需3800元.求購進A,B兩種樹苗的單價;若該學校準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵.22.(10分)我市某中學舉辦“網絡安全知識答題競賽”,初、高中部根據初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.平均分(分)中位數(分)眾數(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據圖示計算出a、b、c的值;結合兩隊成績的平均數和中位數進行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩定.23.(12分)(1)計算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化簡:÷(1﹣)24.(14分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

根據題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質得AD=3x,利用銳角三角函數表示出BD的長,由垂徑定理表示出BC的長,然后根據面積法解答即可.【題目詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內接正三邊形的邊心距為1,故選B.【題目點撥】本題考查正多邊形和圓,三角形重心的性質,垂徑定理,銳角三角函數,面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.2、A【解題分析】

本題首先利用A點恰好落在邊CD上,可以求出A′C=BC′=1,又因為A′B=可以得出△A′BC為等腰直角三角形,即可以得出∠ABA′、∠DBD′的大小,然后將陰影部分利用切割法分為兩個部分來求,即面積ADA′和面積DA′D′【題目詳解】先連接BD,首先求得正方形ABCD的面積為,由分析可以求出∠ABA′=∠DBD′=45°,即可以求得扇形ABA′的面積為,扇形BDD′的面積為,面積ADA′=面積ABCD-面積A′BC-扇形面積ABA′=;面積DA′D′=扇形面積BDD′-面積DBA′-面積BA′D′=,陰影部分面積=面積DA′D′+面積ADA′=【題目點撥】熟練掌握面積的切割法和一些基本圖形的面積的求法是本題解題的關鍵.3、D【解題分析】

根據題意可以求得P1,點P2,點P3的坐標,從而可以發現其中的變化的規律,從而可以求得P2018的坐標,本題得以解決.【題目詳解】解:由題意可得,

點P1(1,1),點P2(3,-1),點P3(5,1),

∴P2018的橫坐標為:2×2018-1=4035,縱坐標為:-1,

即P2018的坐標為(4035,-1),

故選:D.【題目點撥】本題考查了點的坐標變化規律,解答本題的關鍵是發現各點的變化規律,求出相應的點的坐標.4、C【解題分析】試題分析:根據軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據此對圖中的圖形進行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個.故選C.考點:軸對稱圖形.5、B【解題分析】

求出不等式組的解集,根據已知得出關于k的不等式,求出不等式的解集即可.【題目詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【題目點撥】本題考查了解一元一次不等式組的應用,解此題的關鍵是能根據不等式組的解集和已知得出關于k的不等式,難度適中.6、C【解題分析】13個不同的分數按從小到大排序后,中位數及中位數之后的共有7個數,故只要知道自己的分數和中位數就可以知道是否獲獎了.故選C.7、D【解題分析】試題分析:根據題意得a≠1且△=,解得且a≠1.觀察四個答案,只有c=1一定滿足條件,故選D.考點:根的判別式;一元二次方程的定義.8、C【解題分析】分析:根據被開方數越大算術平方根越大,可得答案.詳解:∵<<,∴1<<5,∴3<﹣1<1.故選C.點睛:本題考查了估算無理數的大小,利用被開方數越大算術平方根越大得出1<<5是解題的關鍵,又利用了不等式的性質.9、B【解題分析】

根據二次根式的運算法則即可求出答案.【題目詳解】A選項:原式=3×2=6,故A不是無理數;B選項:原式=,故B是無理數;C選項:原式==6,故C不是無理數;D選項:原式==12,故D不是無理數故選B.【題目點撥】考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.10、A【解題分析】

根據題意可得不等式恰好有兩個負整數解,即-1和-2,再結合不等式計算即可.【題目詳解】根據x的不等式x-b>0恰有兩個負整數解,可得x的負整數解為-1和-2綜合上述可得故選A.【題目點撥】本題主要考查不等式的非整數解,關鍵在于非整數解的確定.二、填空題(共7小題,每小題3分,滿分21分)11、x≥-1【解題分析】試題分析:由題意得,x+1≥0,解得x≥﹣1.故答案為x≥﹣1.考點:函數自變量的取值范圍.12、6【解題分析】

過A作AM⊥CD于M,過A作AN⊥BC于N,先根據“AAS”證明△DAM≌△BAN,再證明四邊形AMCN為正方形,可求得AC=6,從而當BD⊥AC時BD最小,且最小值為6.【題目詳解】如下圖,過A作AM⊥CD于M,過A作AN⊥BC于N,則∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四邊形AMCN為正方形,∴S四邊形ABCD=S四邊形AMCN=AC2,∴AC=6,∴BD⊥AC時BD最小,且最小值為6.故答案為:6.【題目點撥】本題考查了全等三角形的判定與性質,正方形的判定與性質,正確作出輔助線是解答本題的關鍵.13、6.2【解題分析】

根據題意和銳角三角函數可以求得BC的長,從而可以解答本題.【題目詳解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB?sin∠BAC=12×0.515≈6.2(米),答:大廳兩層之間的距離BC的長約為6.2米.故答案為:6.2.【題目點撥】本題考查解直角三角形的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用銳角三角函數和數形結合的思想解答.14、1【解題分析】

利用樹狀圖展示所有1種等可能的結果數.【題目詳解】解:畫樹狀圖為:

共有1種等可能的結果數.

故答案為1.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.15、(4π﹣3)cm1【解題分析】

連接OB、OC,作OH⊥BC于H,根據圓周角定理可知∠BOC的度數,根據等邊三角形的性質可求出OB、OH的長度,利用陰影面積=S扇形OBC-S△OBC即可得答案【題目詳解】:連接OB、OC,作OH⊥BC于H,則BH=HC=BC=3,∵△ABC為等邊三角形,∴∠A=60°,由圓周角定理得,∠BOC=1∠A=110°,∵OB=OC,∴∠OBC=30°,∴OB==1,OH=,∴陰影部分的面積=﹣×6×=4π﹣3,故答案為:(4π﹣3)cm1.【題目點撥】本題主要考查圓周角定理及等邊三角形的性質,在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;熟練掌握圓周角定理是解題關鍵.16、x≠1.【解題分析】

該函數是分式,分式有意義的條件是分母不等于0,故分母x-1≠0,解得x的范圍.【題目詳解】根據題意得:x?1≠0,解得:x≠1.故答案為x≠1.【題目點撥】本題考查了函數自變量的取值范圍,解題的關鍵是熟練的掌握分式的意義.17、2n+1【解題分析】觀察擺放的一系列圖形,可得到依次的周長分別是3,4,5,6,7,…,從中得到規律,根據規律寫出第n個圖形的周長.解:由已知一系列圖形觀察圖形依次的周長分別是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n個圖形的周長為:2+n.故答案為2+n.此題考查的是圖形數字的變化類問題,關鍵是通過觀察分析得出規律,根據規律求解.三、解答題(共7小題,滿分69分)18、(1)y=x2+x;(2)t=-4,r=-1.【解題分析】

(1)由①聯立方程組,根據拋物線y=ax2+bx與直線y=x只有一個交點可以求出b的值,由②可得對稱軸為x=1,從而得a的值,進而得出結論;(2)進行分類討論,分別求出t和r的值.【題目詳解】(1)y=ax2+bx和y=x聯立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因為y=x2+x=(x-1)2+,所以頂點(1,)當-2<r<1,且r≠0時,當x=r時,y最大=r2+r=1.5r,得r=-1,當x=-2時,y最小=-4,所以,這時t=-4,r=-1.當r≥1時,y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【題目點撥】本題考查二次函數綜合題,解題的關鍵是理解題意,利用二次函數的性質解決問題.19、(1)商店經營該商品一天要獲利潤2160元,則每件商品應降價2元或8元;(2)y=﹣10x2+100x+2000,當x=5時,商場獲取最大利潤為2250元.【解題分析】

(1)根據“總利潤=每件的利潤×每天的銷量”列方程求解可得;

(2)利用(1)中的相等關系列出函數解析式,配方成頂點式,利用二次函數的性質求解可得.【題目詳解】解:(1)依題意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,經檢驗:x1=2,x2=8,答:商店經營該商品一天要獲利潤2160元,則每件商品應降價2元或8元;(2)依題意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴當x=5時,y取得最大值為2250元.答:y=﹣10x2+100x+2000,當x=5時,商場獲取最大利潤為2250元.【題目點撥】本題考查二次函數的應用和一元二次方程的應用,解題關鍵是由題意確定題目蘊含的相等關系,并據此列出方程或函數解析式.20、(1)證明見解析;(2).【解題分析】

(1)連接AF、AC,易證∠EAC=∠DAF,再證明ΔEAC?ΔDAF,根據全等三角形的性質即可得CE=DF;(2)由旋轉的性質可得∠DAG、∠BAE都是旋轉角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.【題目詳解】(1)證明:連接,∵正方形旋轉至正方形∴,∴∴在和中,,∴∴(2).∠DAG、∠BAE、∠FMC、∠CNF;由旋轉的性質可得∠DAG、∠BAE都是旋轉角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,【題目點撥】本題考查了正方形的性質、旋轉的性質及全等三角形的判定與性質,證明ΔEAC?ΔDAF是解決問題的關鍵.21、(1)A種樹苗的單價為200元,B種樹苗的單價為300元;(2)10棵【解題分析】試題分析:(1)設B種樹苗的單價為x元,則A種樹苗的單價為y元.則由等量關系列出方程組解答即可;(2)設購買A種樹苗a棵,則B種樹苗為(30﹣a)棵,然后根據總費用和兩種樹苗的棵數關系列出不等式解答即可.試題解析:(1)設B種樹苗的單價為x元,則A種樹苗的單價為y元,可得:,解得:,答:A種樹苗的單價為200元,B種樹苗的單價為300元.(2)設購買A種樹苗a棵,則B種樹苗為(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A種樹苗至少需購進10棵.考點:1.一元一次不等式的應用;2.二元一次方程組的應用22、(1)85,85,80;(2)初中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論