湖南省常德市2024屆中考數學全真模擬試卷含解析_第1頁
湖南省常德市2024屆中考數學全真模擬試卷含解析_第2頁
湖南省常德市2024屆中考數學全真模擬試卷含解析_第3頁
湖南省常德市2024屆中考數學全真模擬試卷含解析_第4頁
湖南省常德市2024屆中考數學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省常德市2024屆中考數學全真模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.按如圖所示的方法折紙,下面結論正確的個數()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個2.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.463.-的立方根是()A.-8 B.-4 C.-2 D.不存在4.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.65.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.6.下列每組數分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm7.當函數y=(x-1)2-2的函數值y隨著x的增大而減小時,x的取值范圍是()A. B. C. D.x為任意實數8.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠BOC=40°,則∠D的度數為()A.100° B.110° C.120° D.130°9.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個10.計算-5x2-3x2的結果是()A.2x2 B.3x2 C.-8x2 D.8x2二、填空題(共7小題,每小題3分,滿分21分)11.把多項式9x3﹣x分解因式的結果是_____.12.已知一個正數的平方根是3x-2和5x-6,則這個數是_____.13.計算()()的結果等于_____.14.已知一個圓錐體的底面半徑為2,母線長為4,則它的側面展開圖面積是___.(結果保留π)15.化簡÷=_____.16.的系數是_____,次數是_____.17.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.三、解答題(共7小題,滿分69分)18.(10分)計算.19.(5分)先化簡,再求值:先化簡÷(﹣x+1),然后從﹣2<x<的范圍內選取一個合適的整數作為x的值代入求值.20.(8分)已知直線y=mx+n(m≠0,且m,n為常數)與雙曲線y=(k<0)在第一象限交于A,B兩點,C,D是該雙曲線另一支上兩點,且A、B、C、D四點按順時針順序排列.(1)如圖,若m=﹣,n=,點B的縱坐標為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標為(1,5),①求m,n的值;②點P(a,b)是雙曲線y=第一象限上一動點,當S△APC≥24時,則a的取值范圍是.21.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.22.(10分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;(2)四邊形BFDE是平行四邊形.23.(12分)如圖,點C是線段BD的中點,AB∥EC,∠A=∠E.求證:AB=24.(14分)益馬高速通車后,將桃江馬跡塘的農產品運往益陽的運輸成本大大降低.馬跡塘一農戶需要將A,B兩種農產品定期運往益陽某加工廠,每次運輸A,B產品的件數不變,原來每運一次的運費是1200元,現在每運一次的運費比原來減少了300元,A,B兩種產品原來的運費和現在的運費(單位:元∕件)如下表所示:品種AB原來的運費4525現在的運費3020(1)求每次運輸的農產品中A,B產品各有多少件;(2)由于該農戶誠實守信,產品質量好,加工廠決定提高該農戶的供貨量,每次運送的總件數增加8件,但總件數中B產品的件數不得超過A產品件數的2倍,問產品件數增加后,每次運費最少需要多少元.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.2、B【解題分析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【題目詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【題目點撥】本題考查了相似三角形的應用與三角形的面積,解題的關鍵是熟練的掌握相似三角形的應用與三角形的面積的相關知識點.3、C【解題分析】分析:首先求出的值,然后根據立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術平方根與立方根,屬于基礎題型.理解算術平方根與立方根的含義是解決本題的關鍵.4、C【解題分析】試題解析:∵am=2,an=3,

∴a3m+2n

=a3m?a2n

=(am)3?(an)2

=23×32

=8×9

=1.故選C.5、A【解題分析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.6、C【解題分析】

根據三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【題目詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【題目點撥】本題考查了三角形的三邊關系,關鍵是靈活運用三角形三邊關系.7、B【解題分析】分析:利用二次函數的增減性求解即可,畫出圖形,可直接看出答案.詳解:對稱軸是:x=1,且開口向上,如圖所示,∴當x<1時,函數值y隨著x的增大而減小;故選B.點睛:本題主要考查了二次函數的性質,解題的關鍵是熟記二次函數的性質.8、B【解題分析】

根據同弧所對的圓周角是圓心角度數的一半即可解題.【題目詳解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所對的圓周角是圓心角度數的一半),故選B.【題目點撥】本題考查了圓周角和圓心角的關系,屬于簡單題,熟悉概念是解題關鍵.9、C【解題分析】

根據有理數的乘方及解一元二次方程-直接開平方法得出兩個有關m的等式,即可得出.【題目詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【題目點撥】本題考查的知識點是有理數的乘方及解一元二次方程-直接開平方法,解題的關鍵是熟練的掌握有理數的乘方及解一元二次方程-直接開平方法.10、C【解題分析】

利用合并同類項法則直接合并得出即可.【題目詳解】解:故選C.【題目點撥】此題主要考查了合并同類項,熟練應用合并同類項法則是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、x(3x+1)(3x﹣1)【解題分析】

提取公因式分解多項式,再根據平方差公式分解因式,從而得到答案.【題目詳解】9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案為x(3x+1)(3x-1).【題目點撥】本題主要考查了因式分解以及平方差公式,解本題的要點在于熟知多項式分解因式的相關方法.12、【解題分析】

試題解析:根據題意,得:解得:故答案為【題目點撥】:一個正數有2個平方根,它們互為相反數.13、4【解題分析】

利用平方差公式計算.【題目詳解】解:原式=()2-()2=7-3=4.故答案為:4.【題目點撥】本題考查了二次根式的混合運算.14、8π【解題分析】

根據圓錐的側面積=底面周長×母線長÷2公式即可求出.【題目詳解】∵圓錐體的底面半徑為2,∴底面周長為2πr=4π,∴圓錐的側面積=4π×4÷2=8π.故答案為:8π.【題目點撥】靈活運用圓的周長公式和扇形面積公式.15、x+1【解題分析】分析:根據根式的除法,先因式分解后,把除法化為乘法,再約分即可.詳解:解:原式=÷=?(x+1)(x﹣1)=x+1,故答案為x+1.點睛:此題主要考查了分式的運算,關鍵是要把除法問題轉化為乘法運算即可,注意分子分母的因式分解.16、1【解題分析】

根據單項式系數及次數的定義進行解答即可.【題目詳解】根據單項式系數和次數的定義可知,﹣的系數是,次數是1.【題目點撥】本題考查了單項式,熟知單項式中的數字因數叫做單項式的系數,一個單項式中所有字母的指數的和叫做單項式的次數是解題的關鍵.17、1【解題分析】

本題首先由等邊三角形的性質及垂直定義得到∠DBE=60°,∠BEC=90°,再根據等腰三角形的性質可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據三角形內角和定理得出關系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結論.【題目詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【題目點撥】本題主要考查等腰三角形的性質及等邊三角形的性質及垂直定義,解題的關鍵是根據三角形內角和定理列出符合題意的簡易方程,從而求出結果.三、解答題(共7小題,滿分69分)18、【解題分析】分析:先計算,再做除法,結果化為整式或最簡分式.詳解:.點睛:本題考查了分式的混合運算.解題過程中注意運算順序.解決本題亦可先把除法轉化成乘法,利用乘法對加法的分配律后再求和.19、﹣,﹣.【解題分析】

根據分式的減法和除法可以化簡題目中的式子,然后在-2<x<中選取一個使得原分式有意義的整數值代入化簡后的式子即可求出最后答案,值得注意的是,本題答案不唯一,x的值可以取-2、2中的任意一個.【題目詳解】原式====,∵-2<x<(x為整數)且分式要有意義,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以選取x=2時,此時原式=-.【題目點撥】本題主要考查了求代數式的值,解本題的要點在于在化解過程中,求得x的取值范圍,從而再選取x=2得到答案.20、(1)①k=5;②見解析,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①;②0<a<1或a>5【解題分析】

(1)①求出直線的解析式,利用待定系數法即可解決問題;②如圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①求出A,B兩點坐標,利用待定系數法即可解決問題;②分兩種情形求出△PAC的面積=24時a的值,即可判斷.【題目詳解】(1)①∵,,∴直線的解析式為,∵點B在直線上,縱坐標為,∴,解得x=2∴,∴;②如下圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①∵點在上,∴k=5,∵四邊形ABCD是矩形,∴OA=OB=OC=OD,∴A,B關于直線y=x對稱,∴,則有:,解得;②如下圖,當點P在點A的右側時,作點C關于y軸的對稱點C′,連接AC,AC′,PC,PC′,PA.∵A,C關于原點對稱,,∴,∵,當時,∴,∴,∴a=5或(舍棄),當點P在點A的左側時,同法可得a=1,∴滿足條件的a的范圍為或.【題目點撥】本題屬于反比例函數與一次函數的綜合問題,熟練掌握待定系數法解函數解析式以及交點坐標的求法是解決本題的關鍵.21、(1)證明見解析;(2)2.【解題分析】

(1)作輔助線,根據等腰三角形三線合一得BD=CD,根據三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結論;(2)證明△ODF∽△AEF,列比例式可得結論.【題目詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【題目點撥】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、相似三角形的性質和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關鍵.22、(1)見解析;(2)見解析;【解題分析】

(1)由四邊形ABCD是平行四邊形,根據平行四邊形的對邊相等,對角相等的性質,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.【題目詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四邊形BFDE是平行四邊形.23、詳見解析【解題分析】

利用AAS證明ΔABC≌ΔECD即可解決問題.【題目詳解】證明:∵C是線段BD的中點∴BC=CD∵AB∥EC∴∠B=∠ECD在△ABC和△ECD中,∠A=∠E∴△ABC≌△ECD∴AB=EC【題目點撥】本題考查全等三角形的判定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論