




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省遼陽市二中學教育協作團隊市級名校2024屆中考數學全真模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.+= B.﹣= C.×=6 D.=42.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關系是()A.相交B.相切C.相離D.無法確定3.下列各式中,正確的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.4.甲、乙兩位同學做中國結,已知甲每小時比乙少做6個,甲做30個所用的時間與乙做45個所用的時間相等,求甲每小時做中國結的個數.如果設甲每小時做x個,那么可列方程為()A.= B.=C.= D.=5.計算﹣2+3的結果是()A.1 B.﹣1 C.﹣5 D.﹣66.在海南建省辦經濟特區30周年之際,中央決定創建海南自貿區(港),引發全球高度關注.據統計,4月份互聯網信息中提及“海南”一詞的次數約48500000次,數據48500000科學記數法表示為()A.485×105B.48.5×106C.4.85×107D.0.485×1087.下列說法中,錯誤的是()A.兩個全等三角形一定是相似形B.兩個等腰三角形一定相似C.兩個等邊三角形一定相似D.兩個等腰直角三角形一定相似8.剪紙是我國傳統的民間藝術,下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.9.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊10.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數關系.則下列說法正確的是()A.兩車同時到達乙地B.轎車在行駛過程中進行了提速C.貨車出發3小時后,轎車追上貨車D.兩車在前80千米的速度相等二、填空題(共7小題,每小題3分,滿分21分)11.如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯結FC,當△EFC是直角三角形時,那么BE的長為______.12.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______.13.如圖,扇形的半徑為,圓心角為120°,用這個扇形圍成一個圓錐的側面,所得的圓錐的高為______.14.已知二次函數,與的部分對應值如下表所示:…-101234……61-2-3-2m…下面有四個論斷:①拋物線的頂點為;②;③關于的方程的解為;④.其中,正確的有___________________.15.如圖,正方形ABCD的邊長為,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點F,則EF的長是__________.16.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個扇形的面積之和(即陰影部分)為cm2(結果保留π).17.如圖,BD是⊙O的直徑,∠CBD=30°,則∠A的度數為_____.三、解答題(共7小題,滿分69分)18.(10分)為弘揚中華傳統文化,黔南州近期舉辦了中小學生“國學經典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率是多少?(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.19.(5分)如圖所示,在中,,(1)用尺規在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)(2)連接AP當為多少度時,AP平分.20.(8分)在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F如圖①,連接AD,若,求∠B的大小;如圖②,若點F為的中點,的半徑為2,求AB的長.21.(10分)拋物線y=ax2+bx+3(a≠0)經過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數;(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.22.(10分)在“雙十一”購物街中,某兒童品牌玩具專賣店購進了兩種玩具,其中類玩具的金價比玩具的進價每個多元.經調查發現:用元購進類玩具的數量與用元購進類玩具的數量相同.求的進價分別是每個多少元?該玩具店共購進了兩類玩具共個,若玩具店將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得的利潤不少于元,則該淘寶專賣店至少購進類玩具多少個?23.(12分)如圖,在平面直角坐標系中,拋物線y=x2+mx+n經過點A(3,0)、B(0,-3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設點P的橫坐標為t.分別求出直線AB和這條拋物線的解析式.若點P在第四象限,連接AM、BM,當線段PM最長時,求△ABM的面積.是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請直接寫出點P的橫坐標;若不存在,請說明理由.24.(14分)在以“關愛學生、安全第一”為主題的安全教育宣傳月活動中,某學校為了了解本校學生的上學方式,在全校范圍內隨機抽查部分學生,了解到上學方式主要有:A:結伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數據整理繪制成如下兩幅不完整的統計圖.請根據圖中信息,解答下列問題:(1)本次抽查的學生人數是多少人?(2)請補全條形統計圖;請補全扇形統計圖;(3)“自行乘車”對應扇形的圓心角的度數是度;(4)如果該校學生有2000人,請你估計該校“家人接送”上學的學生約有多少人?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
根據同類二次根式才能合并可對A進行判斷;根據二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據二次根式的除法對D進行判斷.【題目詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【題目點撥】此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.2、C【解題分析】
首先求出方程的根,再利用半徑長度,由點O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【題目詳解】∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合題意舍去),x2=6,
∵點O到直線l距離是方程x2-4x-12=0的一個根,即為6,
∴點O到直線l的距離d=6,r=5,
∴d>r,
∴直線l與圓相離.故選:C【題目點撥】本題考核知識點:直線與圓的位置關系.解題關鍵點:理解直線與圓的位置關系的判定方法.3、B【解題分析】
A.括號前是負號去括號都變號;B負次方就是該數次方后的倒數,再根據前面兩個負號為正;C.兩個負號為正;D.三次根號和二次根號的算法.【題目詳解】A選項,﹣(x﹣y)=﹣x+y,故A錯誤;B選項,﹣(﹣2)﹣1=,故B正確;C選項,﹣,故C錯誤;D選項,22,故D錯誤.【題目點撥】本題考查去括號法則的應用,分式的性質,二次根式的算法,熟記知識點是解題的關鍵.4、A【解題分析】
設甲每小時做x個,乙每小時做(x+6)個,根據甲做30個所用時間與乙做45個所用時間相等即可列方程.【題目詳解】設甲每小時做x個,乙每小時做(x+6)個,根據甲做30個所用時間與乙做45個所用時間相等可得=.故選A.【題目點撥】本題考查了分式方程的應用,找到關鍵描述語,正確找出等量關系是解決問題的關鍵.5、A【解題分析】
根據異號兩數相加的法則進行計算即可.【題目詳解】解:因為-2,3異號,且|-2|<|3|,所以-2+3=1.故選A.【題目點撥】本題主要考查了異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值.6、C【解題分析】
依據科學記數法的含義即可判斷.【題目詳解】解:48511111=4.85×117,故本題選擇C.【題目點撥】把一個數M記成a×11n(1≤|a|<11,n為整數)的形式,這種記數的方法叫做科學記數法.規律:(1)當|a|≥1時,n的值為a的整數位數減1;(2)當|a|<1時,n的值是第一個不是1的數字前1的個數,包括整數位上的1.7、B【解題分析】
根據相似圖形的定義,結合選項中提到的圖形,對選項一一分析,選出正確答案.【題目詳解】解:A、兩個全等的三角形一定相似,正確;B、兩個等腰三角形一定相似,錯誤,等腰三角形的形狀不一定相同;C、兩個等邊三角形一定相似;正確,等邊三角形形狀相同,只是大小不同;D、兩個等腰直角三角形一定相似,正確,等腰直角三角形形狀相同,只是大小不同.故選B.【題目點撥】本題考查的是相似形的定義,聯系圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.特別注意,本題是選擇錯誤的,一定要看清楚題.8、C【解題分析】【分析】根據軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【題目詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【題目點撥】本題主要考查軸對稱圖形和中心對稱圖形,在平面內,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內,如果把一個圖形繞某個點旋轉180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.9、B【解題分析】分析:從俯視圖中可以看出最底層小正方體的個數及形狀,從主視圖和左視圖可以看出每一層小正方體的層數和個數,從而算出總的個數.解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.10、B【解題分析】
①根據函數的圖象即可直接得出結論;②求得直線OA和DC的解析式,求得交點坐標即可;③由圖象無法求得B的橫坐標;④分別進行運算即可得出結論.【題目詳解】由題意和圖可得,轎車先到達乙地,故選項A錯誤,轎車在行駛過程中進行了提速,故選項B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應的速度是:千米/時,故選項D錯誤,設貨車對應的函數解析式為y=kx,5k=300,得k=60,即貨車對應的函數解析式為y=60x,設CD段轎車對應的函數解析式為y=ax+b,,得,即CD段轎車對應的函數解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發3.9小時后,轎車追上貨車,故選項C錯誤,故選:B.【題目點撥】此題考查一次函數的應用,解題的關鍵在于利用題中信息列出函數解析式二、填空題(共7小題,每小題3分,滿分21分)11、1.5或3【解題分析】根據矩形的性質,利用勾股定理求得AC==5,由題意,可分△EFC是直角三角形的兩種情況:如圖1,當∠EFC=90°時,由∠AFE=∠B=90°,∠EFC=90°,可知點F在對角線AC上,且AE是∠BAC的平分線,所以可得BE=EF,然后再根據相似三角形的判定與性質,可知△ABC∽△EFC,即,代入數據可得,解得BE=1.5;如圖2,當∠FEC=90°,可知四邊形ABEF是正方形,從而求出BE=AB=3.故答案為1.5或3.點睛:此題主要考查了翻折變換的性質,勾股定理,矩形的性質,正方形的判定與性質,利用勾股定理列方程求解是常用的方法,本題難點在于分類討論,做出圖形更形象直觀.12、5或1.【解題分析】
先依據勾股定理求得AB的長,然后由翻折的性質可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設DB=DB′=x,然后依據勾股定理列出關于x的方程求解即可.【題目詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當∠B′DE=90°時,過點B′作B′F⊥AF,垂足為F.設BD=DB′=x,則AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當∠B′ED=90°時,C與點E重合.∵AB′=5,AC=6,∴B′E=5.設BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長為5或1.13、4cm【解題分析】
求出扇形的弧長,除以2π即為圓錐的底面半徑,然后利用勾股定理求得圓錐的高即可.【題目詳解】扇形的弧長==4π,
圓錐的底面半徑為4π÷2π=2,
故圓錐的高為:=4,
故答案為4cm.【題目點撥】本題考查了圓錐的計算,重點考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.14、①③.【解題分析】
根據圖表求出函數對稱軸,再根據圖表信息和二次函數性質逐一判斷即可.【題目詳解】由二次函數y=ax2+bx+c(a≠0),y與x的部分對應值可知:該函數圖象是開口向上的拋物線,對稱軸是直線x=2,頂點坐標為(2,-3);與x軸有兩個交點,一個在0與1之間,另一個在3與4之間;當y=-2時,x=1或x=3;由拋物線的對稱性可知,m=1;①拋物線y=ax2+bx+c(a≠0)的頂點為(2,-3),結論正確;②b2﹣4ac=0,結論錯誤,應該是b2﹣4ac>0;③關于x的方程ax2+bx+c=﹣2的解為x1=1,x2=3,結論正確;④m=﹣3,結論錯誤,其中,正確的有.①③故答案為:①③【題目點撥】本題考查了二次函數的圖像,結合圖表信息是解題的關鍵.15、2【解題分析】
設EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【題目詳解】設EF=x,
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°-22.5°=67.5°,
∴∠AED=180°-45°-67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2.16、.【解題分析】
圖中陰影部分的面積就是兩個扇形的面積,圓A,B的半徑為2cm,則根據扇形面積公式可得陰影面積.【題目詳解】(cm2).故答案為.考點:1、扇形的面積公式;2、兩圓相外切的性質.17、60°【解題分析】解:∵BD是⊙O的直徑,∴∠BCD=90°(直徑所對的圓周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的兩個銳角互余),∴∠A=∠D=60°(同弧所對的圓周角相等);故答案是:60°三、解答題(共7小題,滿分69分)18、(1);(2).【解題分析】
(1)直接利用概率公式求解;(2)先畫樹狀圖展示所有12種等可能的結果數,再找出恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數,然后根據概率公式求解.【題目詳解】(1)她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率=;(2)畫樹狀圖為:共有12種等可能的結果數,其中恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數為1,所以恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率=.19、(1)詳見解析;(2)30°.【解題分析】
(1)根據線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據等腰三角形的性質可得,由角平分線的定義可得,根據直角三角形兩銳角互余的性質即可得∠B的度數,可得答案.【題目詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當時,AP平分.【題目點撥】本題考查尺規作圖,考查了垂直平分線的性質、直角三角形兩銳角互余的性質及等腰三角形的性質,線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質是解題關鍵.20、(1)∠B=40°;(2)AB=6.【解題分析】
(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD
,即可求得∠CAD=∠ADO
,繼而求得答案;
(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD
,由點F為弧AD的中點,易得△AOF是等邊三角形,繼而求得答案.【題目詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點F為弧AD的中點,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【題目點撥】本題考查了切線的性質,平行線的性質,等腰三角形的性質,弧弦圓心角的關系,等邊三角形的判定與性質,含30°角的直角三角形的性質.熟練掌握切線的性質是解(1)的關鍵,證明△AOF為等邊三角形是解(2)的關鍵.21、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).【解題分析】試題分析:把點的坐標代入即可求得拋物線的解析式.作BH⊥AC于點H,求出的長度,即可求出∠ACB的度數.延長CD交x軸于點G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直線的方程,和拋物線的方程聯立即可求得點的坐標.試題解析:(1)由題意,得解得.∴這條拋物線的表達式為.(2)作BH⊥AC于點H,∵A點坐標是(-1,0),C點坐標是(0,3),B點坐標是(,0),∴AC=,AB=,OC=3,BC=.∵,即∠BAD=,∴.Rt△BCH中,,BC=,∠BHC=90o,∴.又∵∠ACB是銳角,∴.(3)延長CD交x軸于點G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG=CG.∴.∴AG=1.∴G點坐標是(4,0).∵點C坐標是(0,3),∴.∴解得,(舍).∴點D坐標是22、(1)的進價是元,的進價是元;(2)至少購進類玩具個.【解題分析】
(1)設的進價為元,則的進價為元,根據用元購進類玩具的數量與用元購進類玩具的數量相同這個等量關系列出方程即可;(2)設玩具個,則玩具個,結合“玩具點將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得利潤不少于元”列出不等式并解答.【題目詳解】解:(1)設的進價為元,則的進價為元由題意得,解得,經檢驗是原方程的解.所以(元)答:的進價是元,的進價是元;(2)設玩具個,則玩具個由題意得:解得.答:至少購進類玩具個.【題目點撥】本題考查了分式方程的應用和一元一次不等式的應用.解決本題的關鍵是讀懂題意,找到符合題意的數量關系,準確的解分式方程或不等式是需要掌握的基本計算能力.23、(1)拋物線的解析式是.直線AB的解析式是.(2).(3)P點的橫坐標是或.【解題分析】
(1)分別利用待定系數法求兩函數的解析式:把A(3,0)B(0,﹣3)分別代入y=x2+mx+n與y=kx+b,得到關于m、n的兩個方程組,解方程組即可;(2)設點P的坐標是(t,t﹣3),則M(t,t2﹣2t﹣3),用P點的縱坐標減去M的縱坐標得到PM的長,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根據二次函數的最值得到當t=﹣=時,PM最長為=,再利用三角形的面積公式利用S△ABM=S△BPM+S△APM計算即可;(3)由PM∥OB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學化學考試化學產品開發試題及答案
- 中國涂布原紙行業市場發展前景及發展趨勢與投資戰略研究報告2025-2028版
- 中國污水處理行業市場發展現狀及前景趨勢與投資分析研究報告2025-2028版
- 中國氣流干燥器行業市場發展前景及發展趨勢與投資戰略研究報告2025-2028版
- 2024年福建廈門啟航培訓服務有限公司招聘筆試真題
- 2025年大學化學選修課試題及答案
- 上海餐飲考試試題及答案
- 辦公家具銷售試題及答案
- 新能源物流車推廣應用與充電樁建設成本優化策略與智能化物流成本分析報告
- 纖維加工過程中的智能化解決方案考核試卷
- 科學控糖與健康體重管理
- 2025年江蘇省南京市中考《二次函數綜合》專題復習講義
- 2025年廣東省高三高考模擬測試二生物試卷(有答案)
- 2024年銀行從業資格考試(中級)《風險管理》試題及答案指導
- 安全生產材料購買合同協議
- 橋梁工程施工檢驗測試計劃
- 四川農商銀行招聘筆試真題2024
- 右足底皮膚裂傷護理查房
- 淘寶商家押金協議書
- 2025年普通高中學業水平選擇性考試沖刺壓軸卷一英語試卷(含答案)
- 血液檢驗 3.2017-正常骨髓細胞形態學-陳學東-20170515173650 學習資料
評論
0/150
提交評論