




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省峨山縣一中2023屆高三第一次聯(lián)合階段檢測試題數(shù)學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若將函數(shù)的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調遞增 B.函數(shù)的周期是C.函數(shù)的圖象關于點對稱 D.函數(shù)在上最大值是12.在展開式中的常數(shù)項為A.1 B.2 C.3 D.73.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.4.在復平面內,復數(shù)(為虛數(shù)單位)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知集合,,則()A. B.C. D.6.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.7.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.848.下列函數(shù)中既關于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.9.若實數(shù)、滿足,則的最小值是()A. B. C. D.10.設為虛數(shù)單位,為復數(shù),若為實數(shù),則()A. B. C. D.11.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.12.已知函數(shù)(,)的一個零點是,函數(shù)圖象的一條對稱軸是直線,則當取得最小值時,函數(shù)的單調遞增區(qū)間是()A.() B.()C.() D.()二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則________.14.六位同學坐在一排,現(xiàn)讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).15.已知,若的展開式中的系數(shù)比x的系數(shù)大30,則______.16.設,滿足條件,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年安慶市在大力推進城市環(huán)境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網(wǎng)絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.18.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值19.(12分)如圖1,與是處在同-個平面內的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.20.(12分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.21.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.22.(10分)11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關于b的表達式,并由此求出數(shù)列的通項公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)三角函數(shù)伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調遞增,正確;關于點對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調遞增在上單調遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數(shù)的性質,涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調性和對稱性、正弦型函數(shù)在一段區(qū)間內的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質.2、D【解析】
求出展開項中的常數(shù)項及含的項,問題得解。【詳解】展開項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。3、B【解析】
列出循環(huán)的每一步,進而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時:,,所以:不成立.繼續(xù)進行循環(huán),…,當,時,成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點睛】本題考查的知識要點:程序框圖的循環(huán)結構和條件結構的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.4、C【解析】
化簡復數(shù)為、的形式,可以確定對應的點位于的象限.【詳解】解:復數(shù)故復數(shù)對應的坐標為位于第三象限故選:.【點睛】本題考查復數(shù)代數(shù)形式的運算,復數(shù)和復平面內點的對應關系,屬于基礎題.5、A【解析】
根據(jù)對數(shù)性質可知,再根據(jù)集合的交集運算即可求解.【詳解】∵,集合,∴由交集運算可得.故選:A.【點睛】本題考查由對數(shù)的性質比較大小,集合交集的簡單運算,屬于基礎題.6、C【解析】
作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準線:,作,;,設,故,,.故選:C【點睛】本題考查了拋物線的性質綜合,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.7、B【解析】
畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.8、C【解析】
根據(jù)函數(shù)的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數(shù)基本性質,根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調性,屬于基礎題.9、D【解析】
根據(jù)約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是基礎題.10、B【解析】
可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題11、D【解析】
根據(jù)三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側面的高為,所以側面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎題.12、B【解析】
根據(jù)函數(shù)的一個零點是,得出,再根據(jù)是對稱軸,得出,求出的最小值與對應的,寫出即可求出其單調增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因為,所以().又,所以,所以,令(),則().因此,當取得最小值時,的單調遞增區(qū)間是().故選:B【點睛】此題考查三角函數(shù)的對稱軸和對稱點,在對稱軸處取得最值,對稱點處函數(shù)值為零,屬于較易題目.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由題意先求得的值,可得,再令,可得結論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎題.14、135【解析】
根據(jù)題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據(jù)題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應用能力.15、2【解析】
利用二項展開式的通項公式,二項式系數(shù)的性質,求得的值.【詳解】展開式通項為:且的展開式中的系數(shù)比的系數(shù)大,即:解得:(舍去)或本題正確結果:【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題.16、【解析】
作出可行域,由得,平移直線,數(shù)形結合可求的最大值.【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當直線經(jīng)過可行域內的點時,最小,此時最大.解方程組,得,..故答案為:.【點睛】本題考查簡單的線性規(guī)劃,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】
(1)利用頻率分布直方圖平均數(shù)等于小矩形的面積乘以底邊中點橫坐標之和,再利用正態(tài)分布的對稱性進行求解.(2)寫出隨機變量的所有可能取值,利用互斥事件和相互獨立事件同時發(fā)生的概率計算公式,再列表得到其分布列.【詳解】解:(1)從這1000人問卷調查得到的平均值為∵由于得分Z服從正態(tài)分布,(2)設得分不低于分的概率為p,(或由頻率分布直方圖知)法一:X的取值為10,20,30,40;;;;所以X的分布列為X10203040P法二:2次隨機贈送的話費及對應概率如下2次話費總和203040PX的取值為10,20,30,40;;;;所以X的分布列為X10203040P【點睛】本題考查了正態(tài)分布、離散型隨機變量的分布列,屬于基礎題.18、(1);(2)【解析】
(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數(shù)的最小值.【點睛】本題主要考查地推數(shù)列的應用,屬于中檔題.19、(1)證明見解析(2)(3)【解析】
根據(jù)折疊圖形,,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標原點,為軸建立空間直角坐標系,根據(jù),可知,,表示相應點的坐標,分別求得平面與平面的法向量,代入求解.設所求幾何體的體積為,設為高,則,表示梯形BEFD和ABD的面積由,再利用導數(shù)求最值.【詳解】(1)證明:不妨設與的交點為與的交點為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因為平面,所以....(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標原點,為軸建立如圖所示的空間直角坐標系由題意知由可知,則則有,,設平面與平面的法向量分別為則有則所以因為,解得設所求幾何體的體積為,設,則,當時,,當時,在是增函數(shù),在上是減函數(shù)當時,有最大值,即六面體的體積的最大值是【點睛】本題主要考查線線垂直,線面垂直,面面垂直的轉化,二面角的向量求法和空間幾何體的體積,還考查了轉化化歸的思想和運算求解的能力,屬于難題.20、(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)分類討論解絕對值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調性,得到只需,代入計算得到答案.【詳解】(Ⅰ)當時,不等式為,變形為或或,解集為或.(Ⅱ)當時,,由此可知在單調遞減,在單調遞增,當時,同樣得到在單調遞減,在單調遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學生的計算能力和綜合應用能力.21、(1);(2)見解析.【解析】
(1)根據(jù)題意得出關于、、的方程組,解出、的值,進而可得出橢圓的標準方程;(2)設點、、,設直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達定理,由向量的坐標運算可求得點的坐標表達式,并代入韋達定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 混凝土路面熱天施工方案
- 梧州職業(yè)學院《行草創(chuàng)作(3)》2023-2024學年第二學期期末試卷
- 寧波衛(wèi)生職業(yè)技術學院《地貌與第四紀地質學》2023-2024學年第二學期期末試卷
- 吉林藝術學院《建設項目投資與融資》2023-2024學年第二學期期末試卷
- 湖北數(shù)字化施工方案
- 江蘇師范大學《秘書從業(yè)技能訓練》2023-2024學年第一學期期末試卷
- 吉林外國語大學《播音學(一)》2023-2024學年第二學期期末試卷
- 湖北凈化彩鋼板施工方案
- 脫硫塔平臺施工方案范本
- 武漢交通職業(yè)學院《河北醫(yī)家學術思想與臨床研究》2023-2024學年第二學期期末試卷
- 無人機租賃合同
- 軍事理論(2024年版)學習通超星期末考試答案章節(jié)答案2024年
- YS-T 5226-2016水質分析規(guī)程
- 國開2024年秋《生產(chǎn)與運作管理》形成性考核1-4答案
- 國家病案質控死亡病例自查表
- 2024年江蘇省無錫市天一實驗學校中考英語押題試卷含答案
- DB3305-T 57-2018幸福鄰里中心建設與服務管理規(guī)范
- AIGC基礎與應用全套教學課件
- 9.1.3二項分布(解析版)
- 神經(jīng)生長因子在神經(jīng)退行性疾病中的作用
- 國有企業(yè)采購管理規(guī)范 T/CFLP 0027-2020
評論
0/150
提交評論