河南省花洲實驗高級中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試試題含解析_第1頁
河南省花洲實驗高級中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試試題含解析_第2頁
河南省花洲實驗高級中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試試題含解析_第3頁
河南省花洲實驗高級中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試試題含解析_第4頁
河南省花洲實驗高級中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省花洲實驗高級中學(xué)2023-2024學(xué)年數(shù)學(xué)高二上期末考試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應(yīng)用,苜蓿葉型立交橋有兩層,將所有原來需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來實現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側(cè)切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結(jié)論正確的個數(shù)是()①曲線C關(guān)于點(0,0)對稱;②曲線C關(guān)于直線y=x對稱;③曲線C的面積超過4π.A.0 B.1C.2 D.32.已知圓的圓心在x軸上,半徑為1,且過點,圓:,則圓,的公共弦長為A. B.C. D.23.若函數(shù)的導(dǎo)函數(shù)為偶函數(shù),則的解析式可能是()A. B.C. D.4.若直線與直線垂直,則()A6 B.4C. D.5.已知呈線性相關(guān)的變量x與y的部分數(shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.76.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國古代聞名中外的“中國剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.167.已知數(shù)列的前項和為,當(dāng)時,()A.11 B.20C.33 D.358.已知是雙曲線:的右焦點,是坐標(biāo)原點,過作的一條漸近線的垂線,垂足為,并交軸于點.若,則的離心率為()A. B.C.2 D.9.二次方程的兩根為2,,那么關(guān)于的不等式的解集為()A.或 B.或C. D.10.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.11.已知橢圓:的左、右焦點為,,上頂點為P,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構(gòu)不成三角形12.已知各項均為正數(shù)且單調(diào)遞減的等比數(shù)列滿足、、成等差數(shù)列.其前項和為,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有三個零點,則實數(shù)的取值范圍為___________.14.若在數(shù)列的每相鄰兩項之間插入此兩項的和,形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷構(gòu)造出新的數(shù)列,現(xiàn)將數(shù)列進行構(gòu)造,第次得到數(shù)列;第次得到數(shù)列;依次構(gòu)造,第次得到數(shù)列;記,則(1)___________,(2)___________15.圓與圓的公共弦長為______16.若滿足約束條件,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)斜率為k的直線與橢圓C交于兩點,O為坐標(biāo)原點,若的面積為定值,判斷是否為定值,如果是,求出該定值;如果不是,說明理由.18.(12分)如圖,已知橢圓:()的左、右焦點分別為、,離心率為.過的直線與橢圓的一個交點為,過垂直于的直線與橢圓的一個交點為,.(1)求橢圓的方程和點的軌跡的方程;(2)若曲線上的動點到直線:的最大距離為,求的值.19.(12分)已知橢圓M:的離心率為,左頂點A到左焦點F的距離為1,橢圓M上一點B位于第一象限,點B與點C關(guān)于原點對稱,直線CF與橢圓M的另一交點為D(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)設(shè)直線AD的斜率為,直線AB的斜率為.求證:為定值20.(12分)已知空間中三點,,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數(shù)的值21.(12分)已知橢圓的左,右焦點為,橢圓的離心率為,點在橢圓C上(1)求橢圓C的方程;(2)點T為橢圓C上的點,若點T在第一象限,且與x軸垂直,過T作兩條斜率互為相反數(shù)的直線分別與橢圓C交于點M,N,探究直線的斜率是否為定值?若為定值,請求之;若不為定值,請說明理由22.(10分)已知橢圓,焦點,A,B是上關(guān)于原點對稱的兩點,的周長的最小值為(1)求的方程;(2)直線FA與交于點M(異于點A),直線FB與交于點N(異于點B),證明:直線MN過定點

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)圖像或解析式即可判斷對稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(-x,-y)代入后依然為,故曲線C關(guān)于原點對稱;②將點(y,x)代入后依然為,故曲線C關(guān)于y=x對稱;③曲線C在四個象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點最遠的點的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯誤.故選:C.2、A【解析】根據(jù)題意設(shè)圓方程為:,代點即可求出,進而求出方程,兩圓方程做差即可求得公共弦所在直線方程,再利用垂徑定理去求弦長.【詳解】設(shè)圓的圓心為,則其標(biāo)準(zhǔn)方程為:,將點代入方程,解得,故方程為:,兩圓,方程作差得其公共弦所在直線方程為:,圓心到該直線的距離為,因此公共弦長為,故選:A.【點睛】本題綜合考查圓的方程及直線與圓,圓與圓位置關(guān)系,屬于中檔題.一般遇見直線與圓相交問題時,常利用垂徑定理解決問題.3、C【解析】根據(jù)題意,求出每個函數(shù)的導(dǎo)函數(shù),進而判斷答案.【詳解】對A,,為奇函數(shù);對B,,為奇函數(shù);對C,,為偶函數(shù);對D,,既不是奇函數(shù)也不是偶函數(shù).故選:C.4、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.5、A【解析】根據(jù)回歸直線過樣本點的中心進行求解即可.【詳解】由題意可得,,則,解得故選:A.6、C【解析】根據(jù)“中國剩余定理”,進而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個判斷框,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)為2.輸出的i值為13.故選:C.7、B【解析】由數(shù)列的性質(zhì)可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數(shù)列的前n項和的性質(zhì),屬于基礎(chǔ)題.8、A【解析】由條件建立a,b,c的關(guān)系,由此可求離心率的值.【詳解】設(shè),則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.9、B【解析】根據(jù),確定二次函數(shù)的圖象開口方向,再由二次方程的兩根為2,,寫出不等式的解集.【詳解】因為二次方程的兩根為2,,又二次函數(shù)的圖象開口向上,所以不等式的解集為或,故選:B10、C【解析】根據(jù)條件構(gòu)造函數(shù),并求其導(dǎo)數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【詳解】令,則當(dāng)時,,當(dāng)時,即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.11、A【解析】根據(jù)題意求得,要判斷的形狀,只需要看是什么角即可,利用余弦定理判斷,從而可得結(jié)論.【詳解】解:由橢圓:,得,則,則,所以且為銳角,因為,所以銳角,所以為銳角三角形.故選:A.12、C【解析】先根據(jù),,成等差數(shù)列以及單調(diào)遞減,求出公比,再由即可求出,再根據(jù)等比數(shù)列通項公式以及前項和公式即可求出.【詳解】解:由,,成等差數(shù)列,得:,設(shè)的公比為,則,解得:或,又單調(diào)遞減,,,解得:,數(shù)列的通項公式為:,.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可得與的圖象有三個不同的交點,經(jīng)判斷時不符合題意,當(dāng)時,時,兩個函數(shù)圖象有一個交點,可得時與的圖象有兩個交點,等價于與的圖象有兩個不同的交點,對求導(dǎo),數(shù)形結(jié)合即可求解.【詳解】令可得,若函數(shù)函數(shù)有三個零點,則可得方程有三個根,即與的圖象有三個不同的交點,作出的圖象如圖:當(dāng)時,是以為頂點開口向下的拋物線,此時與的圖象沒有交點,不符合題意;當(dāng)時,與的圖象只有一個交點,不符合題意;當(dāng)時,時,與的圖象有一個交點,所以時與的圖象有兩個交點,即方程有兩個不等的實根,即方程有兩個不等的實根,可得與的圖象有兩個不同的交點,令,則,由即可得,由即可得,所以在單調(diào)遞增,在單調(diào)遞減,作出其圖象如圖:當(dāng)時,,當(dāng)時,可得與的圖象有兩個不同的交點,即時,函數(shù)有三個零點,所以實數(shù)的取值范圍為,故答案為:【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.14、①.②.【解析】根據(jù)題意得到,再利用疊加法求解即可.【詳解】由題知:,,,所以,,,……,,所以,,……,,即,所以.故答案為:;15、【解析】兩圓方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長故答案為:16、5【解析】作出可行域,作直線,平移該直線可得最優(yōu)解【詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當(dāng)直線過點時取得最小值5故答案為:5三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,定值為6【解析】(1)根據(jù)題意條件,可直接求出的值,然后再利用條件中、的關(guān)系,借助即可求解出、的值,從而得到橢圓方程;(2)根據(jù)已知條件設(shè)出、所在直線方程,然后與橢圓聯(lián)立方程,分別表示出根與系數(shù)的關(guān)系,再表示出弦長關(guān)系,再計算點到直線的距離,把面積用和的式子表示出來,通過給出的面積的值,找到和的等量關(guān)系,將等量關(guān)系帶入到利用跟與系數(shù)關(guān)系組合成的中即可得到答案.【小問1詳解】由題意:,由知:,故橢圓C的標(biāo)準(zhǔn)方程為,【小問2詳解】設(shè):,①橢圓.②聯(lián)立①②得:,,即∴,O到直線l的距離,∴,∴,即,∴.故為定值6.18、(1)橢圓的方程為,點的軌跡的方程為(2)【解析】(1)由題意可得,求出,再結(jié)合,求出,從而可得橢圓的方程,設(shè),則由題意可得,坐標(biāo)代入化簡可得點的軌跡的方程,(2)由題意結(jié)合點到直線的距離公式可得,設(shè),將直線方程代入橢圓方程中消去,整理利用根與系數(shù)的關(guān)系,由,可得,因為,代入化簡計算可求得答案【小問1詳解】由題意得,解得,則,所以橢圓的方程,設(shè),則由題意可得,所以,所以,所以點軌跡的方程為【小問2詳解】由(1)知曲線是以原點為圓心,1為半徑的圓,因為曲線上的動點到直線:的最大距離為,所以,得,設(shè),由,得,所以,,因為,所以,所以,所以,因為,所以,所以,,所以,得,得(舍去),或19、(1)(2)證明見解析【解析】(1)根據(jù)橢圓離心率公式,結(jié)合橢圓的性質(zhì)進行求解即可;(2)設(shè)出直線CF的方程與橢圓方程聯(lián)立,根據(jù)斜率公式,結(jié)合一元二次方程根與系數(shù)關(guān)系進行求解即可.【小問1詳解】(1),,∴,,,∴;【小問2詳解】設(shè),,則,CF:聯(lián)立∴,∴【點睛】關(guān)鍵點睛:利用一元二次方程根與系數(shù)的關(guān)系是解題的關(guān)鍵.20、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.21、(1);(2)直線的斜率為定值,且定值為.【解析】(1)根據(jù)橢圓的離心率及所過的點求出橢圓參數(shù)a、b,即可得橢圓標(biāo)準(zhǔn)方程.(2)由題設(shè)得,法一:設(shè)為,聯(lián)立橢圓方程應(yīng)用韋達定理求M坐標(biāo),根據(jù)與斜率關(guān)系求N的坐標(biāo),應(yīng)用兩點式求斜率;法二:設(shè)為,,聯(lián)立橢圓方程,應(yīng)用韋達定理及得到關(guān)于參數(shù)m、k的方程,即可判斷是否為定值.【小問1詳解】由題意,則,又,所以橢圓C方程為,代入有,解得,所以,故橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由題設(shè)易知:,法一:設(shè)直線為,由,消去y,整理得,因為方程有一個根為,所以M的橫坐標(biāo)為,縱坐標(biāo),故M為,用代替k,得N為,所以,故直線的斜率為定值法二:由已知直線的斜率存在,可設(shè)直線為,,由,消去y,整理得,所以,而,又,代入整理得,所以,即,若,則直線過點T,不合題意,所以.即,故直線的斜率為定值.【點睛】關(guān)鍵點點睛:第二問,設(shè)直線方程并聯(lián)立橢圓方程,應(yīng)用韋達定理及得到關(guān)于直線斜率的方M、N程,或求出的坐標(biāo),應(yīng)用兩點式求斜率.22、(1)(2)證明見解析【解析】(1)設(shè)橢圓的左焦點為,根據(jù)橢圓的對稱性可得,則三角形的周長為,再設(shè)根據(jù)二次函數(shù)的性質(zhì)得到,即可求出的周長的最小值為,從而得到,再根據(jù),即可求出、,從而求出橢圓方程;(2)設(shè)直線MN的方程,,,,聯(lián)立直線與橢圓方程,消元列出韋達定理,再設(shè)直線的方程、,直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論