




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省廣州市順德區廣州第一中學2024屆數學高二上期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2021年是中國共產黨百年華誕,3月24日,中宣部發布中國共產黨成立100周年慶祝活動標識(如圖1).其中“100”的兩個“0”設計為兩個半徑為R的相交大圓,分別內含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.2.圓C:的圓心坐標和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和3.已知動點在直線上,過點作圓的切線,切點為,則線段的長度的最小值為()A. B.4C. D.4.“”是“”的()A.充分不必要條件 B.必要不充分條件C充分必要條件 D.既不充分也不必要條件5.若函數在定義域上單調遞增,則實數的取值范圍為()A. B.C. D.6.若復數滿足,則復數對應的點的軌跡圍成圖形的面積等于()A. B.C. D.7.若函數,當時,平均變化率為3,則等于()A. B.2C.3 D.18.已知關于的不等式的解集是,則的值是()A B.5C. D.79.直線x﹣y+3=0的傾斜角是()A.30° B.45°C.60° D.150°10.拋物線的焦點到準線的距離為()A. B.C. D.111.設點P是函數圖象上任意一點,點Q的坐標,當取得最小值時圓C:上恰有2個點到直線的距離為1,則實數r的取值范圍為()A. B.C. D.12.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一條光線從點射出,經x軸反射,其反射光線所在直線與圓相切,則反射光線所在的直線方程為____.14.若直線是曲線的切線,也是曲線的切線,則__________15.若向量,,,且向量,,共面,則______16.“直線和直線垂直”的充要條件是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列滿足:,,數列的前n項和為(1)求及;(2)設是首項為1,公比為3的等比數列,求數列的前項和18.(12分)已知函數f(x)=x﹣lnx(1)求曲線y=f(x)在點(1,f(1))處的切線方程;(2)求函數f(x)的極值.19.(12分)為了保證我國東海油氣田海域海上平臺的生產安全,海事部門在某平臺O的北偏西45°方向km處設立觀測點A,在平臺O的正東方向12km處設立觀測點B,規定經過O、A、B三點的圓以及其內部區域為安全預警區.如圖所示:以O為坐標原點,O的正東方向為x軸正方向,建立平面直角坐標系(1)試寫出A,B的坐標,并求兩個觀測點A,B之間的距離;(2)某日經觀測發現,在該平臺O正南10kmC處,有一艘輪船正以每小時km的速度沿北偏東45°方向行駛,如果航向不變,該輪船是否會進入安全預警區?如果不進入,請說明理由;如果進入,則它在安全警示區內會行駛多長時間?20.(12分)已知直線l過點,與兩坐標軸的正半軸分別交于A,B兩點,O為坐標原點(1)若的面積為,求直線l的方程;(2)求的面積的最小值21.(12分)設命題p:實數x滿足x≤2,或x>6,命題q:實數x滿足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且為真命題,求實數x的取值范圍;(2)若q是的充分不必要條件,求實數a的取值范圍.22.(10分)已知兩定點,,動點與兩定點的斜率之積為(1)求動點M的軌跡方程;(2)設(1)中所求曲線為C,若斜率為的直線l過點,且與C交于P,Q兩點.問:在x軸上是否存在一點T,使得對任意且,都有(其中,分別表示,的面積).若存在,請求出點T的坐標;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】作出圖形,進而根據勾股定理并結合圓與圓的位置關系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.2、C【解析】先將方程化為一般形式,再根據公式計算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標為,半徑為故選:C3、A【解析】求出的最小值,由切線長公式可結論【詳解】解:由,得最小時,最小,而,所以故選:A.4、A【解析】根據充分條件和必要條件的定義直接判斷即可.【詳解】若,則,即或,推不出;反過來,若,可推出.故“”是“”的充分不必要條件故選:A.5、D【解析】函數在定義域上單調遞增等價于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數的定義域為,,在定義域上單調遞增等價于在上恒成立,即在上恒成立,即在上恒成立,分離參數得,所以,即.【點睛】方法點睛:已知函數的單調性求參數的取值范圍的通解:若在區間上單調遞增,則在區間上恒成立;若在區間上單調遞減,則在區間上恒成立;然后再利用分離參數求得參數的取值范圍即可.6、D【解析】利用復數的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復數滿足,表示復數對應的點的軌跡是以點為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D7、B【解析】直接利用平均變化率的公式求解.【詳解】解:由題得.故選:B8、D【解析】由題意可得的根為,然后利用根與系數的關系列方程組可求得結果【詳解】因為關于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D9、C【解析】先求斜率,再求傾斜角即可【詳解】解:直線的斜截式方程為,∴直線的斜率,∴傾斜角,故選:C【點睛】本題主要考查直線的傾斜角與斜率,屬于基礎題10、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關基本量,屬于基礎題.11、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數形結合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數形結合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C12、D【解析】根據拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設為:則準線方程為:解得:則拋物線的標準方程為:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】點關于軸的對稱點為,即反射光線過點,分別討論反射光線的斜率存在與不存在的情況,進而求解即可【詳解】點關于軸的對稱點為,(1)設反射光線的斜率為,則反射光線的方程為,即,因為反射光線與圓相切,所以圓心到反射光線的距離,即,解得,所以反射光線方程為:;(2)當不存在時,反射光線,此時,也與圓相切,故答案為:或【點睛】本題考查直線在光學中的應用,考查圓的切線方程14、【解析】根據導數的幾何意義,結合待定系數法進行求解即可.【詳解】設曲線的切點為:,由,所以過該切點的切線斜率為:,于切線方程為:,因此有:,設曲線的切點為:,由,所以過該切點的切線斜率為:,于是切線方程為:,因此有:,因為,,即,因此,故答案為:【點睛】關鍵點睛:根據導數的幾何意義進行求解是解題的關鍵.15、##【解析】由向量共面的性質列出方程組求解即可.【詳解】因為,,共面,所以存在實數x,y,使得,得,解得∴故答案為:16、或【解析】利用直線一般式方程表示垂直的方法求解.【詳解】因為直線和直線垂直,所以,解得或;故答案為:或.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)先根據已知求出,再求及.(2)先根據已知得到,再利用分組求和求數列的前項和.【詳解】(1)設等差數列的公差為d,因為,,所以,解得,所以;==.(2)由已知得,由(1)知,所以,=.【點睛】(1)本題主要考查等差數列的通項和前n項和求法,考查分組求和和等比數列的求和公式,意在考查學生對這些知識的掌握水平和計算推理能力.(2)有一類數列,它既不是等差數列,也不是等比數列,但是數列是等差數列或等比數列或常見特殊數列,則可以將這類數列適當拆開,可分為幾個等差、等比數列或常見的特殊數列,然后分別求和,再將其合并即可.這叫分組求和法.18、(1)(2)極小值為,無極大值【解析】(1)求出函數的導函數,再根據導數的幾何意義即可求出切線方程;(2)根據導數的符號求出函數的單調區間,再根據極值的定義即可得出答案.【小問1詳解】解:,則,,即切線的斜率為0,所以曲線y=f(x)在點(1,f(1))處曲線的切線方程為;小問2詳解】當時,,當時,,所以函數在上遞減,在上遞增,函數的極小值為,無極大值.19、(1);(2)會駛入安全預警區,行駛時長為半小時【解析】(1)先求出A,B的坐標,再由距離公式得出A,B之間的距離;(2)由三點的坐標列出方程組得出經過三點的圓的方程,設輪船航線所在的直線為,再由幾何法得出直線與圓截得的弦長,進而得出安全警示區內行駛時長.【小問1詳解】由題意得,∴;【小問2詳解】設圓的方程為,因為該圓經過三點,∴,得到.所以該圓方程為:,化成標準方程為:.設輪船航線所在的直線為,則直線的方程為:,圓心(6,8)到直線的距離,所以直線與圓相交,即輪船會駛入安全預警區.直線與圓截得的弦長為,行駛時長小時.即在安全警示區內行駛時長為半小時.20、(1)或(2)4【解析】(1)設直線方程為,根據所過的點及面積可得關于的方程組,求出解后可得直線方程,我們也可以設直線,利用面積求出后可得直線方程.(2)結合(1)中直線方程的形式利用基本不等式可求面積的最小值.【小問1詳解】法一:(1)設直線,則解得或,所以直線或法二:設直線,,則,則,∴或﹣8所以直線或【小問2詳解】法一:∵,∴,∴,此時,∴面積的最小值為4,此時直線法二:∵,∴,此時,∴面積的最小值為4,此時直線21、(1){x|2<x<4};(2).【解析】(1)分別求出命題和為真時對應的取值范圍,即可求出;(2)由題可知,列出不等式組即可求解.【詳解】解:(1)當a=2時,命題q:2<x<4,∵命題p:x≤2或x>6,,又為真命題,∴x滿足,∴2<x<4,∴實數x的取值范圍{x|2<x<4};(2)由題意得:命題q:a<x<2a;∵q是的充分不必要條件,,,解得,∴實數a的取值范圍.【點睛】結論點睛:本題考查根據充分不必要條件求參數,一般可根據如下規則判斷:(1)若是的必要不充分條件,則對應集合是對應集合的真子集;(2)若是的充分不必要條件,則對應集合是對應集合的真子集;(3)若是的充分必要條件,則對應集合與對應集合相等;(4)若是的既不充分又不必要條件,則對應的集合與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025內科工作總結(16篇)
- 周工作總結范文(29篇)
- 人教版 (PEP)五年級下冊Unit 5 Whose dog is it Part A第二課時教學設計
- 公司銷售業務員述職報告范文個人(20篇)
- 大二班主任工作總結范文(4篇)
- 小學信息技術粵教版 (B版)三年級上冊第4課“畫圖”新朋友教案設計
- 人音版四年級音樂下冊(簡譜)第5課《演唱 小溪流水響叮咚》教學設計
- 醫院工作個人實習總結范文(4篇)
- 幼兒園轉讓協議(20篇)
- 網絡平臺教學心得(4篇)
- 紡紗織造工藝流程培訓教材實用課件
- 中美關系新時代52張課件
- 廣東省廣州市廣外、鐵一、廣附三校2022-2023學年高一下學期期末聯考物理試題(無答案)
- 《通達信炒股軟件從入門到精通》讀書筆記模板
- 科研誠信問題課件
- 高頻電刀之負極板的正確使用方法
- 關于高中班級管理論文
- 21秋國家開放大學《公共部門人力資源管理》單元自測題參考答案
- 東北抗聯英雄人物智慧樹知到答案章節測試2023年牡丹江師范學院
- 2023年鄭州信息科技職業學院單招考試職業適應性測試模擬試題及答案解析
- 國開電大2022年《小學數學教學研究》形考任務1-4答
評論
0/150
提交評論