




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省灤縣第二中學2023年高二數學第一學期期末調研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數列滿足,且,則的值為()A.2 B.1C. D.-12.下列說法或運算正確的是()A.B.用反證法證明“一個三角形至少有兩個銳角”時需設“一個三角形沒有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切3.等差數列中,為其前項和,,則的值為()A.13 B.16C.104 D.2084.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.455.在區間內隨機地取出兩個數,則兩數之和小于的概率是()A. B.C. D.6.已知命題,;命題,,那么下列命題為假命題的是()A. B.C. D.7.關于x的方程在內有解,則實數m的取值范圍()A. B.C. D.8.用3,4,5,6,7,9這6個數組成沒有重復數字的六位數,下列結論正確的有()A.在這樣的六位數中,奇數共有480個B.在這樣的六位數中,3、5、7、9相鄰的共有120個C.在這樣的六位數中,4,6不相鄰的共有504個D.在這樣六位數中,4個奇數從左到右按照從小到大排序的共有60個9.為了解義務教育階段學校對雙減政策的落實程度,某市教育局從全市義務教育階段學校中隨機抽取了6所學校進行問卷調查,其中有4所小學和2所初級中學,若從這6所學校中再隨機抽取兩所學校作進一步調查,則抽取的這兩所學校中恰有一所小學的概率是()A. B.C. D.10.甲組數據為:5,12,16,21,25,37,乙組數據為:1,6,14,18,38,39,則甲、乙的平均數、極差及中位數相同的是()A.極差 B.平均數C.中位數 D.都不相同11.設為實數,則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓12.圍棋起源于中國,據先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發意境、陶冶情操、修身養性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關聯,蘊含著中華文化的豐富內涵.在某次國際圍棋比賽中,規定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據以往戰績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.36二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線,左右焦點分別為,若過右焦點的直線與以線段為直徑的圓相切,且與雙曲線在第二象限交于點,且軸,則雙曲線的離心率是_________.14.以雙曲線的右焦點為圓心,為半徑的圓與的一條漸近線交于兩點,若,則雙曲線的離心率為_________15.已知P是橢圓的上頂點,過原點的直線l交C于A,B兩點,若的面積為,則l的斜率為____________16.2021年7月,某市發生德爾塔新冠肺炎疫情,市衛健委決定在全市設置多個核酸檢測點對全市人員進行核酸檢測.已知組建一個小型核酸檢測點需要男醫生1名,女醫生3名,每小時可做200人次的核酸檢測,組建一個大型核酸檢測點需要男醫生3名,女醫生3名.每小時可做300人次的核酸檢測.某三甲醫院決定派出男醫生10名、女醫生18名去做核酸檢測工作,則這28名醫生需要組建________個小型核酸檢測點和________個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標系上,已知圓的直徑,定直線到圓心的距離為,且直線垂直于直線,點是圓上異于、的任意一點,直線、分別交與、兩點(1)求過點且與圓相切的直線方程;(2)若,求以為直徑的圓方程;(3)當點變化時,以為直徑的圓是否過圓內的一定點,若過定點,請求出定點;若不過定點,請說明理由18.(12分)已知函數.(1)當時,求曲線在點處的切線方程;(2)若,且,討論函數的零點個數.19.(12分)若函數與的圖象有一條與直線平行的公共切線,求實數a的值20.(12分)已知數列{}的前n項和為,且2=3-3(n∈)(1)求數列{}的通項公式(2)若=(n+1),求數列{}的前n項和21.(12分)如圖,在直三棱柱中,,是中點.(1)求點到平面的的距離;(2)求平面與平面夾角的余弦值;22.(10分)《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬中,側棱底面,且,過棱的中點,作交于點,連接(1)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;(2)記陽馬的體積為,四面體的體積為,求的值;(3)若面與面所成二面角的大小為,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據數列的遞推關系式,求得數列的周期性,結合周期性得到,即可求解.【詳解】解:由題意,數列滿足,且,可得,可得數列是以三項為周期的周期數列,所以.故選:D.2、D【解析】對于A:可以解決;對于B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”;對于C:全稱否定必須是全部否定;對于D:需要觀察出所給直線是過定點的.【詳解】A:,故錯誤;B:“一個三角形至少由兩個銳角”的反面是“只有一個銳角或沒有銳角”,所以用反證法時應假設只有一個銳角和沒有銳角兩種情況,故錯誤;C:的否定形式是,故錯誤;D:直線是過定點(-1,0),而圓,圓心為(2,0),半徑為4,定點(-1,0)到圓心的距離為2-(-1)=3<4,故定點在圓內,故正確;故選:D.3、D【解析】利用等差數列下標的性質,結合等差數列前項和公式進行求解即可.【詳解】由,所以,故選:D4、C【解析】設雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標,把點的坐標代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設點是雙曲線與截面的一個交點,設雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:5、C【解析】利用幾何概型的面積型,確定兩數之和小于的區域,進而根據面積比求概率.【詳解】由題意知:若兩個數分別為,則,如上圖示,陰影部分即為,∴兩數之和小于的概率.故選:C6、B【解析】由題設命題的描述判斷、的真假,再判斷其復合命題的真假即可.【詳解】對于命題,僅當時,故為假命題;對于命題,由且開口向上,故為真命題;所以為真命題,為假命題,綜上,為真,為假,為真,為真.故選:B7、A【解析】當時,顯然不成立,當時,分離變量,利用導數求得函數的單調性與最值,即可求解.【詳解】當時,可得顯然不成立;當時,由于方程可轉化為,令,可得,當時,,函數單調遞增;當時,,函數單調遞減,所以當時,函數取唯一的極大值,也是最大值,所以,所以,即,所以實數m的取值范圍.故選:A.8、A【解析】A選項,特殊位置優先考慮求出這樣的六位數中,奇數個數;B選項,相鄰問題捆綁法求解;C選項,不相鄰問題插空法求解;D選項,定序問題使用倍縮法求解.【詳解】用3,4,5,6,7,9這6個數組成沒有重復數字的六位數,個位為3,5,7,9中的一位,有種,其余五個數位上的數字進行全排列,有種,綜上:在這樣的六位數中,奇數共有個,A正確;在這樣的六位數中,3、5、7、9相鄰,將3、5、7、9捆綁,有種排法,再與4,6進行全排列,故共有個,B錯誤;在這樣的六位數中,4,6不相鄰,先將3、5、7、9進行全排列,再從五個位置中任選兩個將4,6排列,綜上共有個,C錯誤;在這樣的六位數中,4個奇數從左到右按照從小到大排序的共有個,D錯誤.故選:A9、A【解析】由組合知識結合古典概型概率公式求解即可.【詳解】從這6所學校中隨機抽取兩所學校的情況共有種,這兩所學校中恰有一所小學的情況共有種,則其概率為.故選:A10、B【解析】由平均數、極差及中位數的定義依次求解即可比較【詳解】,,故甲、乙的平均數相同,甲、乙的極差分別為,,故不同,甲、乙的中位數分別為,,故不同,故選:11、A【解析】根據圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【詳解】解:對A:因為曲線C的方程中都是二次項,所以根據拋物線標準方程的特征曲線C不可能是拋物線,故選項A正確;對B:當時,曲線C為雙曲線,故選項B錯誤;對C:當時,曲線C為圓,故選項C錯誤;對D:當且時,曲線C為橢圓,故選項D錯誤;故選:A.12、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結果.【詳解】甲最終獲得冠軍的概率,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據題意可得,進而可得,再根據,可得再根據雙曲線的定義,即可得到,進而求出結果.【詳解】如圖所示:設切點為,所以,又軸所以,所以,由,,所以又,所以故答案為:.14、【解析】由題意可得,化簡整理得到,進而可求出結果.【詳解】因為雙曲線的一個焦點到其一條漸近線為,所有由題意可得,即,則,所以離心率,故答案為:.15、【解析】設出直線AB的方程,聯立橢圓方程得到A點橫坐標滿足,再利用,解方程即可得到答案.【詳解】設直線AB的方程為:,,由,得,所以,又所以,解得.故答案為:16、①.4②.2【解析】根據題意建立不等式組,進而作出可行域,最后通過數形結合求得答案.【詳解】設需要組建個小型核酸檢測點和個大型核酸檢測點,則每小時做核酸檢測的最高人次,作出可行域如圖中陰影部分所示,由圖可見當直線過點A時,z取得最大值,由得恰為整數點,所以組建4個小型核酸檢測點和2個大型核酸檢測點,才能更高效的完成本次核酸檢測工作.故答案為:4;2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)(3)過定點,定點坐標為【解析】(1)對所求直線的斜率是否存在進行分類討論,在所求直線斜率不存在時,直接驗證直線與圓相切;在所求直線斜率存在時,設所求直線方程為,利用點到直線的距離公式可得出關于的等式,求出的值,綜合可得出所求直線的方程;(2)分點在軸上方、點在軸下方兩種情況討論,求出點、的坐標,可得出所求圓的圓心坐標和半徑,即可得出所求圓的方程;(3)設直線的方程為,其中,求出點、的坐標,可求得以線段為直徑的圓的方程,并化簡圓的方程,可求得定點的坐標.【小問1詳解】解:易知圓的方程為,圓心為原點,半徑為,若所求直線的斜率不存在,則所求直線的方程為,此時直線與圓相切,合乎題意,若所求直線的斜率存在,設所求直線的方程為,即,由已知可得,解得,此時所求直線的方程為.綜上所述,過點且與圓相切的直線方程為或.【小問2詳解】解:易知直線的方程為,、,若點在軸上方,則直線的方程為,在直線的方程中,令,可得,即點,直線的方程為,在直線的方程中,令,可得,即點,線段的中點為,且,此時,所求圓的方程為;若點在軸下方,同理可求得所求圓的方程為.綜上所述,以為直徑的圓方程為.【小問3詳解】解:不妨設直線的方程為,其中,在直線的方程中,令,可得,即點,因為,則直線的方程為,在直線的方程中,令,可得,即點,線段中點為,,所以,以線段為直徑的圓的方程為,即,由,解得,因此,當點變化時,以為直徑的圓是否過圓內的定點.18、(1).(2)答案見解析.【解析】(1)求導函數,求得,,由此可求得曲線在點處的切線方程;(2)求得導函數,分和討論,當時,設,求導函數,分析導函數的符號,得出所令函數的單調性,從而得函數的單調性,根據零點存在定理可得答案.【小問1詳解】解:當時,,所以,故,,所以曲線在點處的切線方程為.【小問2詳解】解:依題意,則,當時,,所以在上單調遞增;當時,設,此時,所以在上單調遞增,又,,所以存在,使得,且在上單調遞減,在上單調遞增.綜上所述,在上單調遞減,在上單調遞增.又,所以當,即時,有唯一零點在區間上,當,即時,在上無零點;故當時,在上有1個零點;當時,在上無零點.19、或3【解析】設出切點,先求和平行且和函數相切的切線,再將切線和聯立,求出的值.【詳解】設公共切線曲線上的切點坐標為,根據題意,得公共切線的斜率,所以,所以與函數的圖像相切的切點坐標為,故可求出公共切線方程為由直線和函數的圖像也相切,得方程,即關于x的方程有兩個相等的實數根,所以,解得或320、(1);(2).【解析】(1)利用的關系可得,即可知為等比數列,寫出等比數列通項公式即可.(2)由(1)得,利用錯位相減求和法即可求出前n項和.【小問1詳解】當時,,解得,當時,,則,即,又,則,∴,故是以為首項,以3為公比的等比數列,∴數列的通項公式為;【小問2詳解】由(1)知,所以,所以①,則②,①-②,得,整理,得,,所以.21、(1)(2)【解析】(1)以為原點,為軸,為軸,為軸建立空間直角坐標系,求出平面的法向量為,再利用公式計算即可;(2)易得平面的法向量為,設平面與平面的夾角為,再利用計算即可小問1詳解】解:(1)以為原點,為軸,為軸,為軸建立空間直角坐標系所以因為,設平面的法向量為,則有,得,令則,所以可以取,設點到平面的距離為,則,所以點到平面的的距離的距離為;【小問2詳解】(2)因為平面,取平面的法向量為設平面與平面的夾角為,所以平面與平面夾角的余弦值22、(1)證明見解析,是鱉臑,四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直線與直線,直線與平面的垂直的轉化證明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判斷DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,確定直角即可;(2)PD是陽馬P?ABCD的高,D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中醫六淫五邪辯證以及調理方法
- 八年級物理新人教版上冊同課異構教案:3物態變化章節復習
- Brand KPIs for ready-made-food Campbells in Mexico-外文版培訓課件(2025.2)
- 浙教版科學七下3.4 牛頓第一定律(第一課時)教學設計與反思
- 產品合同保證與客戶服務承諾
- 2025浙江省信息技術行業企業農民工勞動合同
- 茶葉進出口合同書
- 臨時借用合同范本
- 2025耕地流轉合同模板版
- 2025租賃終止協議合同
- GB/T 43741-2024網絡安全技術網絡安全眾測服務要求
- 接觸網搶修支柱組立及補償繩更換教案文檔
- 高中生班會課課件 愛情三角理論愛情的本質
- 購車方案格式
- 區塊鏈技術在農業領域的應用
- 學生創新思維綜合評價表
- 新生兒足底采血檢查
- 采購職員離職工作交接詳單
- 青島市特殊建設工程消防驗收辦事指南
- 少數民族哈薩克族民俗文化科普介紹圖文課件
- CNAS-CL02-A001:2023 醫學實驗室質量和能力認可準則的應用要求
評論
0/150
提交評論