




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
海南省東方市瓊西中學2023-2024學年數學高二上期末預測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.金剛石的成分為純碳,是自然界中天然存在的最堅硬物質,它的結構是由8個等邊三角形組成的正八面體.若某金剛石的棱長為2,則它的體積為()A. B.C. D.2.已知圓,為圓外的任意一點,過點引圓的兩條切線、,使得,其中、為切點.在點運動的過程中,線段所掃過圖形的面積為()A. B.C. D.3.已知,,若,則()A.9 B.6C.5 D.34.已知直線,若異面,,則的位置關系是()A.異面 B.相交C.平行或異面 D.相交或異面5.已知直線過點且與直線平行,則直線方程為()A. B.C. D.6.甲乙兩個雷達獨立工作,它們發現飛行目標的概率分別是0.9和0.8,飛行目標被雷達發現的概率為()A.0.72 B.0.26C.0.7 D.0.987.圓與圓的位置關系是()A.相交 B.相離C.內切 D.外切8.已知數列的通項公式為,按項的變化趨勢,該數列是()A.遞增數列 B.遞減數列C.擺動數列 D.常數列9.已知是定義在上的函數,且對任意都有,若函數的圖象關于點對稱,且,則()A. B.C. D.10.若數列等差數列,a1=1,,則a5=()A. B.C. D.11.瑞士數學家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點,其歐拉線方程為,則頂點C的坐標是()A.() B.()C.() D.()12.已知是拋物線上的點,F是拋物線C的焦點,若,則()A.1011 B.2020C.2021 D.2022二、填空題:本題共4小題,每小題5分,共20分。13.已知,用割線逼近切線的方法可以求得___________.14.若不同的平面的一個法向量分別為,,則與的位置關系為___________.15.若x,y滿足約束條件,則的最小值為___________.16.已知命題:方程表示焦點在軸上的橢圓;命題:方程表示雙曲線.若為真,則實數的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在所有棱長均為2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求證:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.18.(12分)如圖,在正方體中,為棱的中點.求證:(1)平面;(2)求直線與平面所成角的大小.19.(12分)各項都為正數的數列的前項和為,且滿足.(1)求數列的通項公式;(2)求;(3)設,數列的前項和為,求使成立的的最小值.20.(12分)已知拋物線C:()的焦點為F,原點O關于點F的對稱點為Q,點關于點Q的對稱點,也在拋物線C上(1)求p的值;(2)設直線l交拋物線C于不同兩點A、B,直線、與拋物線C的另一個交點分別為M、N,,,且,求直線l的橫截距的最大值.21.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數的取值范圍22.(10分)設數列是公比為正整數的等比數列,滿足,,設數列滿足,.(1)求數列的通項公式;(2)求證:數列是等差數列,并求數列的通項公式;(3)已知數列,設,求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由幾何關系先求出一個正四面體的高,再結合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設底面中心為,連接,由幾何關系知,,則正八面體體積為.故選:C2、D【解析】連接、、,分析可知四邊形為正方形,求出點的軌跡方程,分析可知線段所掃過圖形為是夾在圓和圓的圓環,利用圓的面積公式可求得結果.【詳解】連接、、,由圓的幾何性質可知,,又因為且,故四邊形為正方形,圓心,半徑為,則,故點的軌跡方程為,所以,線段掃過的圖形是夾在圓和圓的圓環,故在點運動的過程中,線段所掃過圖形的面積為.故選:D.3、D【解析】根據空間向量垂直的坐標表示即可求解.【詳解】.故選:D.4、D【解析】以正方體為載體說明即可.【詳解】如下圖所示的正方體:和是異面直線,,;和是異面直線,,與是異面直線.所以兩直線與是異面直線,,則的位置關系是相交或異面.故選:D5、C【解析】由題意,直線的斜率為,利用點斜式即可得答案.【詳解】解:因為直線與直線平行,所以直線的斜率為,又直線過點,所以直線的方程為,即,故選:C.6、D【解析】利用對立事件的概率求法求飛行目標被雷達發現的概率.【詳解】由題設,飛行目標不被甲、乙發現的概率分別為、,所以飛行目標被雷達發現的概率為.故選:D7、A【解析】求出兩圓的圓心及半徑,求出圓心距,從而可得出結論.【詳解】解:圓的圓心為,半徑為,圓圓心為,半徑為,則兩圓圓心距,因為,所以兩圓相交.故選:A.8、B【解析】分析的單調性,即可判斷和選擇.【詳解】因為,顯然隨著的增大,是遞增的,故是遞減的,則數列是遞減數列.故選:B.9、D【解析】令,代入可得,即得,再由函數的圖象關于點對稱,判斷得函數的圖象關于點對稱,即,則化簡可得,即函數的周期為,從而代入求解.【詳解】令,得,即,所以,因為函數的圖象關于點對稱,所以函數的圖象關于點對稱,即,所以,即,可得,則,故選:D.第II卷(非選擇題10、B【解析】令、可得等差數列的首項和第三項,即可求出第五項,從而求出.【詳解】令得,令得,所以數列的公差為,所以,解得,故選:B.11、A【解析】根據題意,求得的外心,再根據外心的性質,以及重心的坐標,聯立方程組,即可求得結果.【詳解】因為,故的斜率,又的中點坐標為,故的垂直平分線的方程為,即,故△的外心坐標即為與的交點,即,不妨設點,則,即;又△的重心的坐標為,其滿足,即,也即,將其代入,可得,,解得或,對應或,即或,因為與點重合,故舍去.故點的坐標為.故選:A.12、C【解析】結合向量坐標運算以及拋物線的定義求得正確答案.【詳解】設,因為是拋物線上的點,F是拋物線C的焦點,所以,準線為:,因此,所以,即,由拋物線的定義可得,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據導數的定義直接計算即可【詳解】因為,所以,故答案為:14、平行【解析】根據題意得到,得出,即可得到平面與的位置關系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關系為平行.故答案為:平行15、##【解析】作出可行域,進而根據z的幾何意義求得答案.【詳解】如圖,作出可行域,由z的幾何意義可知當過點B時取得最小值.聯立,則最小值為.故答案為:.16、【解析】既然為真,那么就是為真,即p是假,并且q是真,根據橢圓和雙曲線的定義即可解出。【詳解】∵為真,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)通過計算·=0來證得AB1⊥BC.(2)通過證明A1C⊥AC1、A1C⊥AC1來證得A1C⊥平面AB1C1.【詳解】證明:(1)易知<>=120°,=+,則·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四邊形AA1C1C為菱形,所以A1C⊥AC1.因為·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.18、(1)證明見解析;(2).【解析】(1)連接,交于,連接,推導出,由此能證明平面.(2)以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出直線與平面所成角的大小.【詳解】(1)證明:連接,交于,連接,∵在正方體中,是正方形,∴是中點,∵為棱的中點,∴,∵平面,平面,∴平面.(2)解:以為原點,為軸,為軸,為軸,建立空間直角坐標系,設正方體中棱長為2,則,,,,,,,設平面的法向量,則,取,得,設直線與平面所成角的大小為,則,∴,∴直線與平面所成角的大小為.【點睛】(1)求直線與平面所成的角的一般步驟:①找直線與平面所成的角,即通過找直線在平面上的射影來完成;②計算,要把直線與平面所成的角轉化到一個三角形中求解(2)作二面角的平面角可以通過垂線法進行,在一個半平面內找一點作另一個半平面的垂線,再過垂足作二面角的棱的垂線,兩條垂線確定的平面和二面角的棱垂直,由此可得二面角的平面角19、(1)(2)(3)【解析】(1)直接利用數列的遞推關系式,結合等差數列的定義,即可求得數列的通項公式;(2)化簡,結合裂項相消法求出數列的和;(3)利用分組法求得,結合,即可求得的最小值.【小問1詳解】解:因為各項都為正數的數列的前項和為,且滿足,當時,解得;當時,;兩式相減可得,整理得(常數),故數列是以2為首項,2為公差的等差數列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當為偶數時,,因為,且為偶數,所以的最小值為48;當為奇數時,,不存在最小的值,故當為48時,滿足條件.20、(1);(2)最大橫截距為.【解析】(1)首先寫出的坐標,根據對稱關系求出的坐標,帶入即可求出.(2)設直線l的方程為,帶入拋物線方程利用韋達定理,計算出直線l的橫截距的表達式從而求出其最大值.【詳解】(1)由題知,,故,代入C的方程得,∴;(2)設直線l的方程為,與拋物線C:聯立得,由題知,可設方程兩根為,,則,,(*)由得,∴,,又點M在拋物線C上,∴,化簡得,由題知M,A為不同兩點,故,,即,同理可得,∴,將(*)式代入得,即,將其代入解得,∴在時取得最大值,即直線l的最大橫截距為.21、或【解析】先分別求出,為真時,的范圍;再求交集,即可得出結果.【詳解】若是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西藏拉薩中學2024-2025學年5月高考化學試題模練習(一)含解析
- 遼寧省葫蘆島市六校聯考2025年初三下學期第一次階段性檢測試題物理試題含解析
- 南京交通職業技術學院《Python程序設計語言》2023-2024學年第二學期期末試卷
- 江西建設職業技術學院《作物栽培原理》2023-2024學年第二學期期末試卷
- 山西工程職業學院《數據結構與算法實驗》2023-2024學年第二學期期末試卷
- 西安醫學院《白描》2023-2024學年第二學期期末試卷
- 股權轉讓居間協議書補充協議書
- 集資房屋買賣協議書
- 專科生答辯秘籍
- 物業服務合作協議書二零二五年
- 皮瓣移植護理與病例介紹課件
- 2025有關房屋買賣合同書模板
- 河北新化股份有限公司鍋爐技改項目(噪聲、固體廢物)竣工環境保護驗收報告
- 高++中語文++高考復習+語言文字運用之錯別字
- 金蝶云星空操作手冊V3
- 個人用電協議合同范例
- 2025年江蘇南京地鐵運營有限責任公司招聘筆試參考題庫含答案解析
- SZDB∕Z 317-2018 大中型商場、超市安全防范規范
- 《圓柱和圓錐》單元整體設計(教學設計)-2023-2024學年六年級下冊數學北京版
- (高清版)DB37∕T 4394.3-2023 政務云平臺 第3部分:服務質量評價指標
- 《蓋碗茶介紹》課件
評論
0/150
提交評論