




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
甘肅省涇川縣第三中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.正三棱錐的側(cè)面都是直角三角形,,分別是,的中點(diǎn),則與平面所成角的余弦值為()A. B.C. D.2.與空間向量共線的一個(gè)向量的坐標(biāo)是()A. B.C. D.3.如圖,在直三棱柱中,D為棱的中點(diǎn),,,,則異面直線CD與所成角的余弦值為()A. B.C. D.4.若拋物線上的點(diǎn)到其焦點(diǎn)的距離是到軸距離的倍,則等于A. B.1C. D.25.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個(gè)是真命題 D.命題,只有一個(gè)是真命題6.甲、乙兩名同學(xué)8次考試的成績統(tǒng)計(jì)如圖所示,記甲、乙兩人成績的平均數(shù)分別為,,標(biāo)準(zhǔn)差分別為,,則()A.>,< B.>,>C.<,< D.<,>7.已知是拋物線上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),若,則()A.1011 B.2020C.2021 D.20228.已知函數(shù)(是的導(dǎo)函數(shù)),則()A.21 B.20C.16 D.119.橢圓C:的焦點(diǎn)在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.810.已知、是平面直角坐標(biāo)系上的直線,“與的斜率相等”是“與平行”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分條件也非必要條件11.設(shè)為拋物線焦點(diǎn),直線,點(diǎn)為上任意一點(diǎn),過點(diǎn)作于,則()A.3 B.4C.2 D.不能確定12.已知,是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn),若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)有下列命題:①當(dāng),時(shí),不等式恒成立;②函數(shù)在上的最小值為2;③函數(shù)在上的最大值為;④若,,且,則的最小值為其中真命題為________________.(填寫所有真命題的序號(hào))14.(建三江)函數(shù)在處取得極小值,則=___15.若橢圓的一個(gè)焦點(diǎn)為,則p的值為______16.如圖,已知正方形邊長為,長方形中,,平面與平面互相垂直,是線段的中點(diǎn),則異面直線與所成角的余弦值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知:在四棱錐中,底面為正方形,側(cè)棱平面,點(diǎn)為中點(diǎn),.(1)求證:平面平面;(2)求直線與平面所成角大小;(3)求點(diǎn)到平面的距離.18.(12分)如圖,扇形AOB的半徑為2,圓心角,點(diǎn)C為弧AB上一點(diǎn),平面AOB且,點(diǎn)且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小19.(12分)在平面直角坐標(biāo)系xOy中,橢圓C1:的左、右焦點(diǎn)分別為,且橢圓C1與拋物線C2:y2=2px(p>0)在第一象限的交點(diǎn)為Q,已知.(1)求的面積(2)求拋物線C2的標(biāo)準(zhǔn)方程.20.(12分)在中,(1)求的大小;(2)若,.求的面積21.(12分)已知橢圓過點(diǎn),且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點(diǎn),且,證明:直線過定點(diǎn).22.(10分)已知橢圓長軸長為4,A,B分別為左、右頂點(diǎn),P為橢圓上不同于A,B的動(dòng)點(diǎn),且點(diǎn)在橢圓上,其中e為橢圓的離心率(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線AP與直線(m為常數(shù))交于點(diǎn)Q,①當(dāng)時(shí),設(shè)直線OQ的斜率為,直線BP的斜率為.求證:為定值;②過Q與PB垂直的直線l是否過定點(diǎn)?如果是,請(qǐng)求出定點(diǎn)坐標(biāo);如果不是,請(qǐng)說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,利用向量法能求出PB與平面PEF所成角的正弦值.【詳解】∵正三棱錐的側(cè)面都是直角三角形,E,F(xiàn)分別是AB,BC的中點(diǎn),∴以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面PEF的法向量,則,取,得,設(shè)PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.2、C【解析】根據(jù)空間向量共線的坐標(biāo)表示即可得出結(jié)果.【詳解】.故選:C.3、A【解析】以C為坐標(biāo)原點(diǎn),分別以,,方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.運(yùn)用異面直線的空間向量求解方法,可求得答案.【詳解】解:以C為坐標(biāo)原點(diǎn),分別以,,的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.由已知可得,,,,則,,所以.又因?yàn)楫惷嬷本€所成的角的范圍為,所以異面直線與所成角的余弦值為.故選:A.4、D【解析】根據(jù)拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點(diǎn)睛】本題主要考查了拋物線的定義和性質(zhì).考查了考生對(duì)拋物線定義的掌握和靈活應(yīng)用,屬于基礎(chǔ)題5、D【解析】由命題為真命題,可判斷二者至少有一個(gè)為真命題,由為假命題,可判斷二者至少有一個(gè)為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個(gè)為真命題,為假命題,說明二者至少有一個(gè)為假命題,綜合上述,可知命題,只有一個(gè)是真命題,故選:D6、A【解析】根據(jù)折線統(tǒng)計(jì)圖,結(jié)合均值、方差的實(shí)際含義判斷、及、的大小.【詳解】由統(tǒng)計(jì)圖知:甲總成績比乙總成績要高,則>,又甲成績的分布比乙均勻,故<.故選:A.7、C【解析】結(jié)合向量坐標(biāo)運(yùn)算以及拋物線的定義求得正確答案.【詳解】設(shè),因?yàn)槭菕佄锞€上的點(diǎn),F(xiàn)是拋物線C的焦點(diǎn),所以,準(zhǔn)線為:,因此,所以,即,由拋物線的定義可得,所以故選:C8、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B9、C【解析】根據(jù)橢圓的離心率,即可求出,進(jìn)而求出長軸長.【詳解】由橢圓的性質(zhì)可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點(diǎn)睛】本題主要考查了橢圓的幾何性質(zhì),屬于基礎(chǔ)題.10、D【解析】根據(jù)直線平行與直線斜率的關(guān)系,即可求解.【詳解】解:與的斜率相等”,“與可能重合,故前者不可以推出后者,若與平行,與的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分條件也非必要條件,故選:D.11、A【解析】由拋物線方程求出準(zhǔn)線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準(zhǔn)線為,設(shè),由拋物線的定義可得,因?yàn)檫^點(diǎn)作于,可得,所以,故選:A.12、C【解析】當(dāng)平面時(shí),三棱錐體積最大,根據(jù)棱長與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時(shí),三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查三棱錐與球的組合體的綜合問題,本題的關(guān)鍵是判斷當(dāng)平面時(shí),三棱錐體積最大.二、填空題:本題共4小題,每小題5分,共20分。13、①③④【解析】①直接利用基本不等式判斷即可;②直接利用基本不等式以及等號(hào)成立的條件判斷即可;③分子、分母同除,利用基本不等式即可判斷;④設(shè),,利用指、對(duì)互化以及基本不等式即可判斷.【詳解】由于,,故恒成立,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以①正確;,當(dāng)且僅當(dāng),即時(shí)取等號(hào),由于,所以②不正確;因?yàn)椋裕?dāng)且僅當(dāng)時(shí)取等號(hào),而,即函數(shù)的最大值為,所以③正確;設(shè),,則,,,,,所以,當(dāng)且僅當(dāng),時(shí)取等號(hào),故的最小值為,所以④正確.故答案為:①③④【點(diǎn)睛】易錯(cuò)點(diǎn)睛:利用基本不等式求最值時(shí),要注意其必須滿足的三個(gè)條件:(1)“一正二定三相等”“一正”就是各項(xiàng)必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項(xiàng)之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時(shí),必須驗(yàn)證等號(hào)成立的條件,若不能取等號(hào)則這個(gè)定值就不是所求的最值,這也是最容易發(fā)生錯(cuò)誤的地方.14、【解析】由,令,解得或,且時(shí),;時(shí),;時(shí),,所以當(dāng)時(shí),函數(shù)取得極小值考點(diǎn):導(dǎo)數(shù)在函數(shù)中的應(yīng)用;極值的條件15、3【解析】利用橢圓標(biāo)準(zhǔn)方程概念求解【詳解】因?yàn)榻裹c(diǎn)為,所以焦點(diǎn)在y軸上,所以故答案:316、【解析】建立如圖所示的空間直角坐標(biāo)系,求出,后可求異面直線所成角的余弦值.【詳解】長方形可得,因?yàn)槠矫媾c平面互相垂直,平面平面,平面,故平面,故可建立如圖所示的空間直角坐標(biāo)系,則,故,,故.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】(1)以AB所在的直線為x軸,以AD所在的直線為y軸,以AP所在的直線為z軸,建立如圖所示的直角坐標(biāo)系,求出平面PCD的法向量為,平面的法向量為,即得證;(2)設(shè)直線與平面所成角為,利用向量法求解;(3)利用向量法求點(diǎn)到平面的距離.【小問1詳解】證明:PA平面ABCD,ABCD為正方形,以AB所在的直線為x軸,以AD所在的直線為y軸,以AP所在的直線為z軸,建立如圖所示的直角坐標(biāo)系.由已知可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1)M為PD的中點(diǎn),,所以,,,所以,又PDAM,,平面PCDAM平面PCD.平面PCD的法向量為.設(shè)平面的法向量為,,令,則,..平面MAC平面PCD.【小問2詳解】解:設(shè)直線與平面所成角為,由(1)可得:平面PCD的法向量為,,,即直線與平面所成角大小.【小問3詳解】解:,設(shè)點(diǎn)到平面的距離為,.點(diǎn)到平面的距離為.18、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點(diǎn),連接MN,利用余弦定理可求得,,的長度,進(jìn)而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(2)建立恰當(dāng)空間直角坐標(biāo)系,求出兩個(gè)平面的法向量,然后利用向量法求解二面角的余弦值,從而即可得答案【小問1詳解】證明:連接,設(shè)與相交于點(diǎn),連接MN,平面,在平面內(nèi),平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面內(nèi),,又,平面,又平面,平面平面;【小問2詳解】解:由(1)可知直線,,兩兩互相垂直,所以以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,所以,,設(shè)平面的一個(gè)法向量為,則,可取;設(shè)平面的一個(gè)法向量為,則,可取,,平面與平面所成二面角的正弦值為19、(1)(2)【解析】(1)設(shè),由橢圓的定義可得,結(jié)合余弦定理可得出的值,從而可得面積.(2)設(shè),根據(jù)的面積結(jié)合橢圓的方程求出點(diǎn)的坐標(biāo),代入拋物線可得答案.【小問1詳解】由橢圓方程知a=2,b=1,,設(shè),則即,求得所以的面積為【小問2詳解】設(shè)由(1)中,得又,,所以代入拋物線方程得,所以所以拋物線的標(biāo)準(zhǔn)方程為20、(1)(2)【解析】(1)利用正弦定理將邊化角,再根據(jù)兩角和的正弦公式及誘導(dǎo)公式得到,即可得解;(2)首先由余弦定理求出,即可得到,再根據(jù)面積公式計(jì)算可得;【小問1詳解】解:因?yàn)椋烧叶ɡ砜傻茫矗衷谥校裕裕弧拘?詳解】解:由余弦定理得,即,解得,所以,又,所以;.21、(1);(2)證明見解析.【解析】(1)由離心率、過點(diǎn)和橢圓關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)當(dāng)直線斜率不存在時(shí),表示出兩點(diǎn)坐標(biāo),由兩點(diǎn)連線斜率公式表示出,整理可得直線為;當(dāng)直線斜率存在時(shí),設(shè),與橢圓方程聯(lián)立可得韋達(dá)定理的形式,代入中整理可得,由此可得直線所過定點(diǎn);綜合兩種情況可得直線過定點(diǎn).【詳解】(1)橢圓過點(diǎn),即,;,又,,橢圓的方程為:.(2)當(dāng)直線斜率不存在時(shí),設(shè)直線方程為,則,則,,解得:,直線方程為;當(dāng)直線斜率存在時(shí),設(shè)直線方程為,聯(lián)立方程組得:,設(shè),則,(*),則,將*式代入化簡可得:,即,整理得:,代入直線方程得:,即,聯(lián)立方程組,解得:,,直線恒過定點(diǎn);綜上所述:直線恒過定點(diǎn).【點(diǎn)睛】思路點(diǎn)睛:本題考查直線與橢圓綜合應(yīng)用中的直線過定點(diǎn)問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與橢圓方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達(dá)定理的形式;③利用韋達(dá)定理表示出已知中的等量關(guān)系,代入韋達(dá)定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點(diǎn)的求解方法可求得結(jié)果.22、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 離職擔(dān)保協(xié)議書范本
- 安全教育總結(jié)
- 園林綠化購銷合同協(xié)議
- 破爛場地轉(zhuǎn)讓合同協(xié)議
- 小區(qū)崗?fù)げ少徍贤瑓f(xié)議
- 離婚協(xié)議書格式書格式
- 工地材料外包合同協(xié)議
- 展廳設(shè)計(jì)施工合同協(xié)議
- 礦業(yè)承包合同協(xié)議書模板
- 湖北襄樊公開招聘農(nóng)村(村務(wù))工作者筆試題含答案2024年
- 情緒心理學(xué)與情緒管理 課件
- 《民俗旅游學(xué)》教案-第九章 歲時(shí)節(jié)日民俗與旅游
- 軟件質(zhì)量證明書
- 高考標(biāo)準(zhǔn)化考場建設(shè)方案詳細(xì)
- 人民醫(yī)院腫瘤科臨床技術(shù)操作規(guī)范2023版
- 高壓-引風(fēng)機(jī)電機(jī)檢修文件包
- 2023屆物理高考二模考前指導(dǎo)
- GB/T 39486-2020化學(xué)試劑電感耦合等離子體質(zhì)譜分析方法通則
- GB/T 11085-1989散裝液態(tài)石油產(chǎn)品損耗
- GXH-3011A1便攜式紅外線CO分析儀
- 2022年四川省阿壩州中考數(shù)學(xué)試卷及解析
評(píng)論
0/150
提交評(píng)論