廣東省東莞市三校2023-2024學年高二上數學期末檢測試題含解析_第1頁
廣東省東莞市三校2023-2024學年高二上數學期末檢測試題含解析_第2頁
廣東省東莞市三校2023-2024學年高二上數學期末檢測試題含解析_第3頁
廣東省東莞市三校2023-2024學年高二上數學期末檢測試題含解析_第4頁
廣東省東莞市三校2023-2024學年高二上數學期末檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省東莞市三校2023-2024學年高二上數學期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.胡蘿卜中含有大量的胡蘿卜素,攝入人體消化器官后,可以轉化為維生素,現從,兩個品種的胡蘿卜所含的胡蘿卜素(單位:)得到莖葉圖如圖所示,則下列說法不正確的是A. B.的方差大于的方差C.品種的眾數為 D.品種的中位數為2.已知點P是圓上一點,則點P到直線的距離的最大值為()A.2 B.C. D.3.已知函數,則()A.函數的極大值為,無極小值 B.函數的極小值為,無極大值C.函數的極大值為0,無極小值 D.函數的極小值為0,無極大值4.執行如圖所示的算法框圖,則輸出的結果是()A. B.C. D.5.在中國古代,人們用圭表測量日影長度來確定節氣,一年之中日影最長的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣,其日影長依次成等差數列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺6.圓和圓的位置關系是()A.內含 B.內切C.相交 D.外離7.已知為拋物線上一點,點P到拋物線C的焦點的距離與它到y軸的距離之比為,則()A.1 B.C.2 D.38.設為實數,則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓9.兩條平行直線與之間的距離為()A. B.C. D.10.已知雙曲線滿足,且與橢圓有公共焦點,則雙曲線的方程為()A. B.C. D.11.已知下列四個命題,其中正確的是()A. B.C. D.12.如圖,P為圓錐的頂點,O是圓錐底面的圓心,圓錐PO的軸截面PAE是邊長為2的等邊三角形,是底面圓的內接正三角形.則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數在區間內存在最大值,則實數的取值范圍是____________.14.在△ABC中,角A,B,C所對的邊分別為a,b,c,設△ABC的面積為S,其中,,則S的最大值為______15.已知從某班學生中任選兩人參加農場勞動,選中兩人都是男生的概率是,選中兩人都是女生的概率是,則選中兩人中恰有一人是女生的概率為______16.已知數列an滿足,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)+alnx,實數a>0(1)當a=2時,求函數f(x)在x=1處的切線方程;(2)討論函數f(x)在區間(0,10)上的單調性和極值情況;(3)若存在x∈(0,+∞),使得關于x的不等式f(x)<2+a2x成立,求實數a的取值范圍18.(12分)已知命題:,在下面①②中任選一個作為:,使為真命題,求出實數a的取值范圍.①關于x的方程有兩個不等正根;②.(若選①、選②都給出解答,只按第一個解答計分.)19.(12分)已知函數(1)解關于的不等式;(2)若不等式在上有解,求實數的取值范圍20.(12分)如圖,在四棱錐中,平面平面ABCD,底面ABCD是矩形,,,直線PA與CD所成角為60°.(1)求直線PD與平面ABCD所成角的正弦值;(2)求二面角的正弦值.21.(12分)已知函數在處的切線垂直于直線.(1)求(2)求的單調區間22.(10分)已知數列滿足,,.(1)證明:數列是等比數列,并求其通項公式;(2)若,求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】讀懂莖葉圖,分別計算出眾數、中位數、方差,然后對各選項進行判斷【詳解】由莖葉圖知,品種所含胡蘿卜素普遍高于品種,所以,故A正確;品種的數據波動比品種的數據波動大,所以的方差大于的方差,故B正確;品種的眾數為與,故C錯誤;品種的數據的中位數為,故D正確.故選.【點睛】本題主要考查了對數據的分析,首先要讀懂莖葉圖,然后計算出眾數、中位數、方差,即可對各選項進行判斷,較為基礎2、C【解析】求出圓心到直線的距離,由這個距離加上半徑即得【詳解】由圓,可得圓心坐標,半徑,則圓心C到直線的距離為,所以點P到直線l的距離的最大值為.故選:C3、A【解析】利用導數來求得的極值.【詳解】的定義域為,,在遞增;在遞減,所以的極大值為,沒有極小值.故選:A4、B【解析】列舉出循環的每一步,利用裂項相消法可求得輸出結果.【詳解】第一次循環,不成立,,;第二次循環,不成立,,;第三次循環,不成立,,;以此類推,最后一次循環,不成立,,.成立,跳出循環體,輸出.故選:B.5、A【解析】由題意可知,十二個節氣其日影長依次成等差數列,設冬至日的日影長為尺,公差為尺,利用等差數列的通項公式,求出,即可求出,從而得到答案【詳解】設從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣其日影長依次成等差數列{},如冬至日的日影長為尺,設公差為尺.由題可知,所以,,,,故選:A6、C【解析】根據兩圓圓心的距離與兩圓半徑和差的大小關系即可判斷.【詳解】解:因為圓的圓心為,半徑為,圓的圓心為,半徑為,所以兩圓圓心的距離為,因為,即,所以圓和圓的位置關系是相交,故選:C.7、B【解析】先求出點的坐標,然后根據拋物線的定義和已知條件列方程求解即可【詳解】因為為拋物線上一點,所以,得,所以,拋物線的焦點為,因為點P到拋物線C的焦點的距離與它到y軸的距離之比為,所以,化簡得,因為,所以,故選:B8、A【解析】根據圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【詳解】解:對A:因為曲線C的方程中都是二次項,所以根據拋物線標準方程的特征曲線C不可能是拋物線,故選項A正確;對B:當時,曲線C為雙曲線,故選項B錯誤;對C:當時,曲線C為圓,故選項C錯誤;對D:當且時,曲線C為橢圓,故選項D錯誤;故選:A.9、D【解析】由已知有,所以直線可化為,利用兩平行直線距離公式有,選D.點睛:本題主要考查兩平行直線間的距離公式,屬于易錯題.在用兩平行直線距離公式時,兩直線中的系數要相同,不然不能用此公式計算10、A【解析】根據橢圓的標準方程求出,利用雙曲線,結合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標準方程為,橢圓中的,雙曲線的焦點與橢圓的焦點相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點睛】關鍵點點睛:本題主要考查雙曲線方程的求解,根據橢圓和雙曲線的關系建立方程求出,,是解決本題的關鍵,考查學生的計算能力,屬于基礎題11、B【解析】根據基本初等函數的求導公式和求導法則即可求解判斷.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B.12、B【解析】先求出,再利用向量的線性運算和數量積計算求解.【詳解】解:由題得,,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先利用導數判斷函數的單調性,再根據函數在開區間內存在最大值,可判斷極大值點就是最大值點,列式求解.【詳解】由題可知:所以函數在單調遞減,在單調遞增,故函數的極大值為.所以在開區間內的最大值一定是又,所以得實數的取值范圍是故答案為:【點睛】關鍵點點睛:由函數在開區間內若存在最大值,即極大值點在區間內,同時還得滿足極大值點是最大值,還需列不等式,不要忽略這個不等式.14、【解析】應用余弦定理有,再由三角形內角性質及同角三角函數平方關系求,根據基本不等式求得,注意等號成立條件,最后利用三角形面積公式求S的最大值.【詳解】由余弦定理知:,而,所以,而,即,當且僅當時等號成立,又,當且僅當時等號成立.故答案為:15、【解析】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,根據為互斥事件,與為對立事件,從而可求出答案.【詳解】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,易知為互斥事件,與為對立事件,又,所以.故答案為:.16、2019【解析】將已知化為代入可以左右相消化簡,將已知化為,代入可以上下相消化簡,再全部代入求解即可.【詳解】由知故所以故答案為:2019三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)4x﹣y+2=0(2)答案見解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的導數,可得切線的斜率和切點坐標,由直線的點斜式方程可得所求切線的方程;(2)求得f(x)的導數,分a、0<a兩種情況討論求出答案即可;(3)由題意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成關于的函數,結合其單調性和極值可得答案【小問1詳解】函數f(x)的定義域為(0,+∞),當a=2時,,導數為4,可得f(x)在x=1處的切線的斜率為4,又f(1)=6,所以f(x)在x=1處的切線的方程為y﹣6=4(x﹣1),即4x﹣y+2=0;【小問2詳解】f(x)的導數為f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①當010,即a時,當0<x時,f′(x)<0,f(x)遞減;當x<10時,f′(x)>0,f(x)遞增所以f(x)在(0,)上遞減,在(,10)上遞增,f(x)在x處取得極小值,無極大值;②當10即0<a時,f′(x)<0,f(x)在(0,10)上遞減,無極值綜上可得,當a時,f(x)在(0,)單調遞減,在(,10)上單調遞增,f(x)在x時取得極小值,無極大值當0<a時,f(x)在區間(0,10)上遞減,無極值;【小問3詳解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等價為存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因為a>0,可得當0<x時,g′(x)<0,g(x)遞減;當x時,g′(x)>0,g(x)遞增,所以當x時,g(x)取得極小值,且為最小值,由題意可得,令,,令h′(x)=0,可得x=2,當x∈(0,2)時,h′(x)>0,h(x)遞增;當x∈(2,+∞)時,h′(x)<0,h(x)遞減所以當x=2時,h(x)取得極大值,且為最大值h(2)=0所以滿足的實數a的取值范圍是(0,2)∪(2,+∞)18、答案見解析【解析】根據題意,分析、為真時的取值范圍,又由復合命題真假的判斷方法可得、都是真命題,據此分析可得答案.【詳解】解:選①時由知在上恒成立,∴,即又由q:關于x的方程有兩個不等正根,知解得,由為真命題知,解得.實數a的取值范圍.選②時由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當且僅當時取“=”號,∴,由為真命題知,解得.實數a的取值范圍.19、(1)當時,或;當時,;當時,或(2)【解析】(1)由題意得對的值進行分類討論可得不等式的解集;(2)將條件轉化為,,再利用基本不等式求最值可得的取值范圍;【小問1詳解】,即,所以,所以,①當時不等式的解為或,②當時不等式的解為,③當時不等式的解為或,綜上:原不等式的解集為當時或,當時,當時或【小問2詳解】不等式在上有解,即在上有解,所以在上有解,所以,因為,所以,當且僅當,即時取等號,所以.20、(1)(2)【解析】(1),所以PA與AB所成的銳角或直角等于PA與CD所成角,然后過P在平面PAB內作,可得平面ABCD,從而可求出答案.(2)可證平面PAB,過B在平面PAB內作,連結CF,則是二面角的平面角,從而可求解.【小問1詳解】因為,所以PA與AB所成的銳角或直角等于PA與CD所成角,可知,是正三角形.過P在平面PAB內作,垂足為E,因為平面平面ABCD,所以平面ABCD,是直線PD與平面ABCD所成角.在正中,,,所以,故直線PD與平面ABCD所成角的正弦值為.【小問2詳解】因為,平面平面ABCD,平面平面ABCD又平面ABCD,所以平面PAB.又平面PAB.則過B在平面PAB內作,垂足為F,連結CF,又,則平面,又平面所以,所以是二面角的平面角.因為,,所以,從而所以二面角正弦值為.21、(1);(2)在內單調遞減,在內單調遞增【解析】(1)由題意求導可得,代入可得(1),從而求,進而求切線方程;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論