河北省重點中學2024屆高二上數學期末學業水平測試試題含解析_第1頁
河北省重點中學2024屆高二上數學期末學業水平測試試題含解析_第2頁
河北省重點中學2024屆高二上數學期末學業水平測試試題含解析_第3頁
河北省重點中學2024屆高二上數學期末學業水平測試試題含解析_第4頁
河北省重點中學2024屆高二上數學期末學業水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省重點中學2024屆高二上數學期末學業水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:,,命題:,,則()A.是假命題 B.是真命題C.是真命題 D.是假命題2.雙曲線:的漸近線與圓:在第一、二象限分別交于點、,若點滿足(其中為坐標原點),則雙曲線的離心率為()A. B.C. D.3.已知下列四個命題,其中正確的是()A. B.C. D.4.正數a,b滿足,若不等式對任意實數x恒成立,則實數m的取值范圍是A. B.C. D.5.已知平面的一個法向量為=(2,-2,4),=(-1,1,-2),則AB所在直線l與平面的位置關系為()A.l⊥ B.C.l與相交但不垂直 D.l∥6.在等差數列中,,則()A.6 B.3C.2 D.17.已知直線與直線垂直,則實數a為()A. B.或C. D.或8.從裝有2個紅球和2個白球的袋內任取2個球,那么互斥而不對立的兩個事件是()A.取出的球至少有1個紅球;取出的球都是紅球B.取出的球恰有1個紅球;取出的球恰有1個白球C.取出的球至少有1個紅球;取出的球都是白球D.取出的球恰有1個白球;取出的球恰有2個白球9.已知橢圓,則下列結論正確的是()A.長軸長為2 B.焦距為C.短軸長為 D.離心率為10.設是兩個非零向量,則“”是“夾角為鈍角”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知橢圓的長軸長是短軸長的倍,左焦點、右頂點和下頂點分別為,坐標原點到直線的距離為,則的面積為()A. B.4C. D.12.若a>0,b>0,且函數f(x)=4x3﹣ax2﹣2bx+2在x=1處有極值,則ab的最大值等于A.2 B.3C.6 D.9二、填空題:本題共4小題,每小題5分,共20分。13.如圖的形狀出現在南宋數學家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最上面一層有1個球,第二層有3個球,第三層有6個球…….設各層球數構成一個數列,其中,,,則______14.已知向量,,若與垂直,則___________.15.設數列的前n項和為,若,且是等差數列.則的值為__________16.若雙曲線的漸近線與圓相切,則該雙曲線的實軸長為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上的點M(5,m)到焦點F的距離為6.(1)求拋物線C的方程;(2)過點作直線l交拋物線C于A,B兩點,且點P是線段AB的中點,求直線l方程.18.(12分)用長度為80米的護欄圍出一個一面靠墻的矩形運動場地,如圖所示,運動場地的一條邊記為(單位:米),面積記為(單位:平方米)(1)求關于的函數關系;(2)求的最大值19.(12分)現將兩個班的藝術類考生報名表分別裝進2個檔案袋,第一個檔案袋內有6名男生和4名女生的報名表,第二個檔案袋內有5名男生和5名女生的報名表.隨機選擇一個檔案袋,然后從中隨機抽取2份報名表(1)若選擇的是第一個檔案袋,求從中抽到兩名男生報名表的概率;(2)求抽取的報名表是一名男生一名女生的概率20.(12分)已知點,圓,點Q在圓上運動,的垂直平分線交于點P.(1)求動點P的軌跡的方程;(2)過點的動直線l交曲線C于A、B兩點,在y軸上是否存在定點T,使以AB為直徑的圓恒過這個點?若存在,求出點T的坐標,若不存在,請說明理由.21.(12分)(1)已知雙曲線的離心率為2,求E的漸近線方程;(2)已知F是拋物線的焦點,是C上一點,且,求C的方程.22.(10分)如圖,已知等腰梯形,,為等腰直角三角形,,把沿折起(1)當時,求證:;(2)當平面平面時,求平面與平面所成二面角的平面角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先分別判斷命題、的真假,再利用邏輯聯結詞“或”與“且”判斷命題的真假.【詳解】由題意,,所以,成立,即命題為真命題,,所以不存在,使得,即命題為假命題,所以是假命題,為真命題,所以是真命題,是假命題,是假命題,是真命題.故選:C2、B【解析】由,得點為三角形的重心,可得,即可求解.【詳解】如圖:設雙曲線的焦距為,與軸交于點,由題可知,則,由,得點為三角形的重心,可得,即,,即,解得.故選:B【點睛】本題主要考查了雙曲線的簡單幾何性質,三角形的重心的向量表示,屬于中檔題.3、B【解析】根據基本初等函數的求導公式和求導法則即可求解判斷.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B.4、A【解析】利用基本不等式求得的最小值,把問題轉化為恒成立的類型,求解的最大值即可.【詳解】,,且a,b為正數,,當且僅當,即時,,若不等式對任意實數x恒成立,則對任意實數x恒成立,即對任意實數x恒成立,,,故選:A【點睛】本題主要考查了恒成立問題,基本不等式求最值,二次函數求最值,屬于中檔題.5、A【解析】由向量與平面法向量的關系判斷直線與平面的位置關系【詳解】因為,所以,所以故選:A6、B【解析】根據等差數列下標性質進行求解即可.【詳解】因為是等差數列,所以,故選:B7、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.8、D【解析】利用互斥事件、對立事件的定義逐一判斷即可.【詳解】A答案中的兩個事件可以同時發生,不是互斥事件B答案中的兩個事件可以同時發生,不是互斥事件C答案中的兩個事件不能同時發生,但必有一個發生,既是互斥事件又是對立事件D答案中的兩個事件不能同時發生,也可以都不發生,故是互斥而不對立事件故選:D【點睛】本題考查的是互斥事件和對立事件的概念,較簡單.9、D【解析】根據已知條件求得,由此確定正確答案.【詳解】依題意橢圓,所以,所以長軸長為,焦距為,短軸長為,ABC選項錯誤.離心率為,D選項正確.故選:D10、B【解析】因為時,夾角為鈍角或平角;而當夾角為鈍角時,成立,所以“”是“夾角為鈍角”的必要不充分條件.故選B考點:1向量的數量積;2充分必要條件11、C【解析】設,根據題意,可知的方程為直線,根據原點到直線的距離建立方程,求出,進而求出,的值,以及到直線的距離,再根據面積公式,即可求出結果.【詳解】設,由題意可知,其中,所以的方程為,即所以原點到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.12、D【解析】求出導函數,利用函數在極值點處的導數值為0得到a,b滿足的條件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因為在x=1處有極值∴a+b=6∵a>0,b>0∴當且僅當a=b=3時取等號所以ab的最大值等于9故選D點評:本題考查函數在極值點處的導數值為0、考查利用基本不等式求最值需注意:一正、二定、三相等二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】由分析可知每次小球數量剛好是等差數列的求和,最后直接公式即可算出答案.【詳解】由題意可知,,所以,故答案為:1514、【解析】根據與垂直,可知,根據空間向量的數量積運算可求出的值,結合向量坐標求向量模的求法,即可得出結果.【詳解】解:與垂直,,則,解得:,,則,.故答案為:.15、52【解析】根據給定條件求出,再求出數列的通項即可計算作答.【詳解】依題意,因是等差數列,則其公差,于是得,,當時,,而滿足上式,因此,,所以.故答案為:5216、【解析】由雙曲線方程寫出漸近線,根據相切關系,結合點線距離公式求參數a,即可確定實軸長.【詳解】由題設,漸近線方程為,且圓心為,半徑為1,所以,由相切關系知:,可得,又,即,所以雙曲線的實軸長為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由拋物線定義有求參數,即可寫出拋物線方程.(2)由題意設,聯立拋物線方程,結合韋達定理、中點坐標求參數k,即可得直線l方程【小問1詳解】由題設,拋物線準線方程為,∴拋物線定義知:可得,故【小問2詳解】由題設,直線l的斜率存在且不為0,設聯立方程,得,整理得,則.又P是線段AB的中點,∴,即故l18、(1)(2)平方米【解析】(1)由題意得矩形場地的另一邊長為80-2x米,通過矩形面積得出關于的函數表達式;(2)利用二次函數的性質求出的最大值即可【小問1詳解】解:由題意得矩形場地的另一邊長為80-2x米,又,得,所以【小問2詳解】解:由(1)得,當且僅當時,函數取得最大值平方米19、(1);(2).【解析】(1)選擇的是第一個檔案袋,從中隨機抽取2份報名表,基本事件總數,從中抽到兩名男生報名表包含的基本事件個數為,由此能求出從中抽到兩名男生報名表的概率;(2)設事件表示抽取到第個檔案袋,,設事件表示抽取的報名表是一名男生一名女生,利用全概率公式能求出抽取的報名表是一名男生一名女生的概率【小問1詳解】(1)第一個檔案袋內有6名男生和4名女生的報名表,選擇的是第一個檔案袋,從中隨機抽取2份報名表,基本事件總數,從中抽到兩名男生報名表包含的基本事件個數為,從中抽到兩名男生報名表的概率【小問2詳解】設事件表示抽取到第個檔案袋,,設事件表示抽取的報名表是一名男生一名女生,則,,,,抽取的報名表是一名男生一名女生的概率為:20、(1);(2)存在,T(0,1)﹒【解析】(1)根據橢圓的定義,結合即可求P的軌跡方程;(2)假設存在T(0,t),設AB方程為,聯立直線方程和橢圓方程,代入=0即可求出定點T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點,且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設直線AB的方程為,聯立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點T(0,1),使以AB為直徑的圓恒過這個點T.21、(1);(2).【解析】(1)由可知,即可求出,故可得漸近線方程;(2)利用點在拋物線上及其拋物線的定義列方程求解即可.【詳解】(1)∵E的離心率,∴,即,解得,故E的漸近線方程為.(2)∵是C上一點,∴①,由拋物線的定義可知②,兩式聯立可得,解得則C的方程為.22、(1)證明見解析(2)【解析】(1)取的中點E,連,證明四邊形為平行四邊形,從而可得為等邊三角形,四邊形為菱形,從而可證,,即可得平面,再根據線面垂直的性質即可得證;(2)取的中點M,連接,以B為空間坐標原

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論