




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省濟南第二中學高二上數(shù)學期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.斗笠,用竹篾夾油紙或竹葉粽絲等編織,是人們遮陽光和雨的工具.某斗笠的三視圖如圖所示(單位:),若該斗笠水平放置,雨水垂直下落,則該斗笠被雨水打濕的面積為()A. B.C. D.2.“橢圓的離心率為”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件3.已知函數(shù)在上可導,且,則與的大小關系為A. B.C. D.不確定4.《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,第九章“勾股”,講述了“勾股定理”及一些應用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設分別是雙曲線的左、右焦點,直線交雙曲線左、右兩支于兩點,若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.5.在的展開式中,只有第4項的二項式系數(shù)最大,則()A.5 B.6C.7 D.86.函數(shù)的定義域為開區(qū)間,導函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)的極大值點有()A.1個 B.2個C.3個 D.4個7.直線的傾斜角為()A B.C. D.8.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.29.命題“,”否定是()A., B.,C., D.,10.已知點在橢圓上,與關于原點對稱,,交軸于點,為坐標原點,,則橢圓離心率為()A. B.C. D.11.已知全集,,()A. B.C. D.12.如圖,在正方體ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直線l在正方形EFGH內(nèi),點E到直線l的距離記為d,記二面角為A-l-P為θ,已知初始狀態(tài)下x=0,d=0,則()A.當x增大時,θ先增大后減小 B.當x增大時,θ先減小后增大C.當d增大時,θ先增大后減小 D.當d增大時,θ先減小后增大二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點與的右焦點重合,則__________.14.已知空間向量,則使成立的x的值為___________15.甲、乙兩人下棋,甲獲勝的概率為,乙獲勝的概率為,則甲、乙兩人下成和棋的概率為___________.16.已知向量,,若,則實數(shù)m的值是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足:,(1)求數(shù)列的通項公式,以及前n項和公式;(2)若,求數(shù)列的前n項和18.(12分)如圖,在四棱錐中,平面,底面為矩形,,,為的中點,.請用空間向量知識解答下列問題:(1)求線段的長;(2)若為線段上一點,且,求平面與平面夾角的余弦值.19.(12分)年月日,中國向世界莊嚴宣告,中國脫貧攻堅戰(zhàn)取得了全面勝利,現(xiàn)行標準下萬農(nóng)村貧困人口全部脫貧,個貧困縣全部摘帽,萬個貧困村全部出列,區(qū)域性整體貧困得到解決,完成了消除絕對貧困的艱巨任務,困擾中華民族幾千年的絕對貧困問題得到了歷史性的解決!為了鞏固脫貧成果,某農(nóng)科所實地考察,研究發(fā)現(xiàn)某脫貧村適合種植、兩種經(jīng)濟作物,可以通過種植這兩種經(jīng)濟作物鞏固脫貧成果,通過大量考察研究得到如下統(tǒng)計數(shù)據(jù):經(jīng)濟作物的畝產(chǎn)量約為公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:年份編號年份單價(元/公斤)經(jīng)濟作物的收購價格始終為元/公斤,其畝產(chǎn)量的頻率分布直方圖如下:(1)若經(jīng)濟作物的單價(單位:元/公斤)與年份編號具有線性相關關系,請求出關于的回歸直線方程,并估計年經(jīng)濟作物的單價;(2)用上述頻率分布直方圖估計經(jīng)濟作物的平均畝產(chǎn)量(每組數(shù)據(jù)以區(qū)間的中點值為代表),若不考慮其他因素,試判斷年該村應種植經(jīng)濟作物還是經(jīng)濟作物?并說明理由附:,20.(12分)已知在等差數(shù)列中,,(1)求數(shù)列的通項公式;(2)若的前n項和為,且,,求數(shù)列的前n項和21.(12分)已知數(shù)列為等差數(shù)列,,數(shù)列滿足,且(1)求的通項公式;(2)設,記數(shù)列的前項和為,求證:22.(10分)已知雙曲線()的一個焦點是,離心率.(1)求雙曲線的方程;(2)若斜率為的直線與雙曲線交于兩個不同的點,線段的垂直平分線與兩坐標軸圍成的三角形的面積為,求直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)三視圖可知,該幾何體是由一個底面半徑為10,高為20的圓錐和寬度為20的圓環(huán)組成的幾何體,則所求面積積為圓錐的側(cè)面積與圓環(huán)的面積之和【詳解】根據(jù)三視圖可知,該幾何體是由一個底面半徑為10,高為20的圓錐和寬度為20的圓環(huán)組成的幾何體,所以該斗笠被雨水打濕的面積為,故選:A2、C【解析】討論橢圓焦點的位置,根據(jù)離心率分別求出參數(shù)m,由充分必要性的定義判斷條件間的充分、必要關系.【詳解】當橢圓的焦點在軸上時,,得;當橢圓的焦點在軸上時,,得故“橢圓的離心率為”是“”的必要不充分條件故選:C.3、B【解析】由,所以.4、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點且.在中,是的中點,所以,因為直線的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.5、B【解析】當n為偶數(shù)時,展開式中第項二項式系數(shù)最大,當n為奇數(shù)時,展開式中第和項二項式系數(shù)最大.【詳解】因為只有一項二項式系數(shù)最大,所以n為偶數(shù),故,得.故選:B6、B【解析】利用極值點的定義求解.【詳解】由導函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個交點:第一個點處導數(shù)左正右負,第二個點處導數(shù)左負右正,第三個點處導數(shù)左正右正,第四個點處導數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極大值點有2個,故選:B7、C【解析】設直線傾斜角為,則,再結合直線的斜率與傾斜角的關系求解即可.【詳解】設直線的傾斜角為,則,∵,所以.故選:C8、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.9、D【解析】根據(jù)含有量詞的命題的否定即可得出結論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.10、B【解析】由,得到,結合,得到,進而求得,得出,結合離心率的定義,即可求解.【詳解】設,則,由,可得,所以,因為,可得,又由,兩式相減得,即,即,又因為,所以,即又由,所以,解得.故選:B.11、C【解析】根據(jù)條件可得,則,結合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C12、C【解析】以F為坐標原點,F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標系,設正方體的棱長為2,則P(2,x,0),A(2,0,2),設直線l與EF,EH交于點M、N,,求得平面AMN的法向量為,平面PMN的法向量,由空間向量的夾角公式表示出,對于A,B選項,令d=0,則,由函數(shù)的單調(diào)性可判斷;對于C,D,當x=0時,則,令,利用導函數(shù)研究函數(shù)的單調(diào)性可判斷.【詳解】解:由題意,以F為坐標原點,F(xiàn)B,F(xiàn)G,F(xiàn)E所在直線為x軸,y軸,z軸建立空間直角坐標系如圖所示,設正方體的棱長為2,則P(2,x,0),A(2,0,2),設直線l與EF,EH交于點M、N,則,所以,,設平面AMN的法向量為,則,即,令,則,設平面PMN的法向量為,則,即,令,則,,對于A,B選項,令d=0,則,顯示函數(shù)在是為減函數(shù),即減小,則增大,故選項A,B錯誤;對于C,D,對于給定的,如圖,過作,垂足為,過作,垂足為,過作,垂足為,當在下方時,,設,則對于給定的,為定值,此時設二面角為,二面角為,則二面角為,且,故,而,故即,當時,為減函數(shù),故為增函數(shù),當時,為增函數(shù),故為減函數(shù),故先增后減,故D錯誤.當在上方時,,則對于給定的,為定值,則有二面角為,且,因,故為增函數(shù),故為減函數(shù),綜上,對于給定的,隨的增大而減少,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出拋物線的焦點坐標即為的右焦點可得答案.【詳解】由題意可知:拋物線的焦點坐標為,由題意知表示焦點在軸的橢圓,在橢圓中:,所以,因為,所以.故答案為:.14、##【解析】利用空間向量垂直的坐標表示列方程求參數(shù)x的值.【詳解】由題設,,可得.故答案為:.15、##【解析】直接根據(jù)概率和為1計算得到答案.【詳解】.故答案為:.16、【解析】結合已知條件和空間向量的數(shù)量積的坐標公式即可求解.【詳解】因為,所以,解得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)由,,列出方程組,求得,即可求得數(shù)列的通項公式,利用公式可得.(2)由(1)求得,結合“裂項法”求和,即可求解.【詳解】(1)設等差數(shù)列的公差為,因為,,可得,解得,所以數(shù)列的通項公式.(2)由(1)知,可得,所以數(shù)列的前項和:.【點睛】關鍵點睛:本題主要考查了等差數(shù)列的通項公式的求解,以及“裂項法”求和的應用,解答本題的關鍵是將的通項裂成兩項的差,利用裂項相消求和,屬于中檔題.18、(1)(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,由已知可得出,求出的值,即可得解;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】解:平面,,以點為坐標原點,、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,設,則、、、,則,,,則,解得,故.【小問2詳解】解:,則,又、、,所以,,,設為平面的法向量,則,取,可得,顯然,為平面的一個法向量,,因此,平面與平面夾角的余弦值為.19、(1),元/公斤;(2)應該種植經(jīng)濟作物;理由見解析【解析】(1)利用表格數(shù)據(jù)求出中心點值,再利用最小二乘法求出回歸直線方程,進而利用所求方程進行預測;(2)先利用頻率分布直方圖的每個小矩形面積之和為1求得值,再利用平均值公式求其平均值,再比較兩種作物的畝產(chǎn)量進行求解.【詳解】(1),,則關于回歸直線方程為當時,,即估計年經(jīng)濟作物的單價為元/公斤(2)利用頻率和為得:,所以經(jīng)濟作物的畝產(chǎn)量的平均值為:,故經(jīng)濟作物畝產(chǎn)值為元,經(jīng)濟作物畝產(chǎn)值為元,應該種植經(jīng)濟作物20、(1);(2).【解析】(1)根據(jù)給定條件求出數(shù)列的公差即可求解作答.(2)由已知條件求出數(shù)列的通項,再利用錯位相減法計算作答.【小問1詳解】等差數(shù)列中,,解得,則公差,所以數(shù)列的通項公式為:.【小問2詳解】的前n項和為,,,則當時,,于是得,即,而,即,,因此,數(shù)列是首項為2,公比為2的等比數(shù)列,,由(1)知,,則,因此,,,所以數(shù)列的前n項和.21、(1);(2)證明見解析.【解析】(1)求出的值,可求得等差數(shù)列的公差,進而可求得數(shù)列的通項公式,再由前項和與通項的關系可求得的表達式,可求得,然后對是否滿足在時的表達式進行檢驗,綜合可得出數(shù)列的通項公式;(2)求得,利用裂項求和法可求得的表達式,利用不等式的性質(zhì)和數(shù)列的單調(diào)性可證得所證不等式成立.【小問1詳解】解:因為,,所以,因為,,所以,設數(shù)列公差為,則,所以,當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)意美術繪畫蚊子課件
- 部編版四年級語文下冊《語文園地八》精美課件
- 2025國際電子商務平臺建設合同
- 學前兒童集合概念的發(fā)展與教育
- 2025供應商合同調(diào)整協(xié)議書
- 信息化與護理安全
- 2025水利工程地勘合同
- 2025年蘇州房屋租賃合同(中介版)
- 2025北師大版一年級下冊數(shù)學期中考試卷附答案
- 網(wǎng)絡輿情監(jiān)測大學課件
- (高清版)DB1331∕T 072-2024 《雄安新區(qū)高品質(zhì)飲用水工程技術規(guī)程》
- 2025年金麗衢十二校高三語文第二次模擬聯(lián)考試卷附答案解析
- 廣東省深圳市福田區(qū)2023-2024學年六年級下學期英語期中試卷(含答案)
- 2023-2024學年廣東省廣州七中七年級(下)期中數(shù)學試卷(含答案)
- 2025年北京城市排水集團有限責任公司招聘筆試參考題庫含答案解析
- 課件-2025年春季學期 形勢與政策 第一講-加快建設社會主義文化強國
- 2025年山東惠民縣農(nóng)業(yè)投資發(fā)展限公司招聘10人歷年高頻重點提升(共500題)附帶答案詳解
- 大學美育知到智慧樹章節(jié)測試課后答案2024年秋長春工業(yè)大學
- 《基于嵌入式Linux的農(nóng)業(yè)信息采集系統(tǒng)設計與研究》
- 外科創(chuàng)傷處理-清創(chuàng)術(外科課件)
- 小型手推式除雪機畢業(yè)設計說明書(有全套CAD圖)
評論
0/150
提交評論