2024屆雞西市重點中學高二上數(shù)學期末聯(lián)考模擬試題含解析_第1頁
2024屆雞西市重點中學高二上數(shù)學期末聯(lián)考模擬試題含解析_第2頁
2024屆雞西市重點中學高二上數(shù)學期末聯(lián)考模擬試題含解析_第3頁
2024屆雞西市重點中學高二上數(shù)學期末聯(lián)考模擬試題含解析_第4頁
2024屆雞西市重點中學高二上數(shù)學期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆雞西市重點中學高二上數(shù)學期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的定義域為開區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)的極大值點有()A.1個 B.2個C.3個 D.4個2.棱長為1的正四面體的表面積是()A. B.C. D.3.設(shè)雙曲線的虛軸長為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.4.若函數(shù)在區(qū)間上有兩個極值點,則實數(shù)的取值范圍是()A. B.C. D.5.圓與的公共弦長為()A. B.C. D.6.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.167.已知等比數(shù)列中,,前三項之和,則公比的值為()A1 B.C.1或 D.或8.若兩條直線與互相垂直,則的值為()A.4 B.-4C.1 D.-19.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.10.程大位是明代著名數(shù)學家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.它問世后不久便風行宇內(nèi),成為明清之際研習數(shù)學者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)為()A.120 B.84C.56 D.2811.雙曲線:的漸近線與圓:在第一、二象限分別交于點、,若點滿足(其中為坐標原點),則雙曲線的離心率為()A. B.C. D.12.已知數(shù)列是遞減的等比數(shù)列,的前項和為,若,,則=()A.54 B.36C.27 D.18二、填空題:本題共4小題,每小題5分,共20分。13.已知圓:,:.則這兩圓的連心線方程為_________(答案寫成一般式方程)14.直線l過拋物線的焦點F,與拋物線交于A,B兩點,與其準線交于點C,若,則直線l的斜率為______.15.半徑為R的圓外接于,且,若,則面積的最大值為________.16.與圓外切于原點,且被y軸截得的弦長為8的圓的標準方程為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)函數(shù)(1)求在上的單調(diào)區(qū)間;(2)當時,不等式恒成立,求實數(shù)a的取值范圍18.(12分)已知橢圓C:短軸長為2,且點在C上(1)求橢圓C的標準方程;(2)設(shè)、為橢圓的左、右焦點,過的直線l交橢圓C與A、B兩點,若的面積是,求直線l的方程19.(12分)已知函數(shù).(1)當時,求的最大值和最小值;(2)說明的圖象由函數(shù)的圖象經(jīng)過怎樣的變換得到?20.(12分)已知圓:,過圓外一點作圓的兩條切線,,,為切點,設(shè)為圓上的一個動點.(1)求的取值范圍;(2)求直線的方程.21.(12分)如圖,四棱錐中,,,,平面,點F在線段上運動.(1)若平面,請確定點F的位置并說明理由;(2)若點F滿足,求平面與平面的夾角的余弦值.22.(10分)已知函數(shù),.(1)當時,求函數(shù)在區(qū)間上的最大值;(2)當時,求函數(shù)的極值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用極值點的定義求解.【詳解】由導(dǎo)函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個交點:第一個點處導(dǎo)數(shù)左正右負,第二個點處導(dǎo)數(shù)左負右正,第三個點處導(dǎo)數(shù)左正右正,第四個點處導(dǎo)數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極大值點有2個,故選:B2、D【解析】采用數(shù)形結(jié)合,根據(jù)邊長,結(jié)合正四面體的概念,計算出正三角形的面積,可得結(jié)果【詳解】如圖由正四面體的概念可知,其四個面均是全等的等邊三角形,由其棱長為1,所以,所以可知:正四面體的表面積為,故選:D3、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.4、D【解析】由題意,即在區(qū)間上有兩個異號零點,令,利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系判斷單調(diào)性,數(shù)形結(jié)合即可求解【詳解】解:由題意,即在區(qū)間上有兩個異號零點,構(gòu)造函數(shù),則,令,得,令,得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又時,,時,,且,所以,即,所以的范圍故選:D5、D【解析】已知兩圓方程,可先讓兩圓方程作差,得到其公共弦的方程,然后再計算圓心到直線的距離,再結(jié)合勾股定理即可完成弦長的求解.【詳解】已知圓,圓,兩圓方程作差,得到其公共弦的方程為::,而圓心到直線的距離為,圓的半徑為,所以,所以.故選:D.6、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當且僅當時取等.故選:B.7、C【解析】根據(jù)條件列關(guān)于首項與公比的方程組,即可解得公比,注意等比數(shù)列求和公式使用條件.【詳解】等比數(shù)列中,,前三項之和,若,,,符合題意;若,則,解得,即公比的值為1或,故選:C【點睛】本題考查等比數(shù)列求和公式以及基本量計算,考查基本分析求解能力,屬基礎(chǔ)題.8、A【解析】根據(jù)兩直線垂直的充要條件知:,即可求的值.【詳解】由兩直線垂直,可知:,即.故選:A9、A【解析】由焦距為可得,又,進而可得,最后根據(jù)焦點在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因為雙曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.10、B【解析】按照框圖中程序,逐步執(zhí)行循環(huán),即可求得答案.【詳解】第一次循環(huán):,,第二次循環(huán):,,第三次循環(huán):,,第四次循環(huán):,,第五次循環(huán):,,第六次循環(huán):,,第七次循環(huán):,,退出循環(huán),輸出.故選:B11、B【解析】由,得點為三角形的重心,可得,即可求解.【詳解】如圖:設(shè)雙曲線的焦距為,與軸交于點,由題可知,則,由,得點為三角形的重心,可得,即,,即,解得.故選:B【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),三角形的重心的向量表示,屬于中檔題.12、C【解析】根據(jù)等比數(shù)列的性質(zhì)及通項公式計算求解即可.【詳解】由,解得或(舍去),,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出兩圓的圓心坐標,再利用兩點式求出直線方程,再化成一般式即可【詳解】解:圓,即,兩圓的圓心為:和,這兩圓的連心線方程為:,即故答案為:14、【解析】由拋物線方程求出焦點坐標與準線方程,設(shè)直線為,、,即可得到的坐標,再聯(lián)立直線與拋物線方程,消元列出韋達定理,表示出、的坐標,根據(jù)得到方程,求出,即可得解;【詳解】解:拋物線方程為,則焦點,準線為,設(shè)直線為,、,則,由,消去得,所以,,則,,因為,所以,所以,所以,解得,所以,即直線為,所以直線的斜率為;故答案為:15、【解析】利用正弦定理將已知條件轉(zhuǎn)化為邊之間的關(guān)系,然后用余弦定理求得C;利用三角形面積公式,結(jié)合兩角差的正弦函數(shù)公式和二倍角公式得,再利用輔助角公式得,最后利用函數(shù)的值域計算得結(jié)論.【詳解】因為所以由正弦定理得:,即,所以由余弦定理可得:,又,故.由正弦定理得:,,所以,所以當時,S最大,.若,則面積的最大值為.故答案為:.【點睛】本題考查了兩角和與差的三角函數(shù)公式,二倍角公式及應(yīng)用,正弦定理,余弦定理,三角形面積公式,函數(shù)的圖象與性質(zhì),屬于中檔題.16、;【解析】設(shè)所求圓的圓心為,根據(jù)兩圓外切于原點可知兩圓心與原點共線,再根據(jù)弦長列出方程組求出即可.【詳解】設(shè)所求圓的圓心為,因為圓的圓心為,與原點連線的斜率為,又所求圓與已知圓外切于原點,,①所以所求圓的半徑滿足,又被y軸截得的弦長為8,②由①②解得,所以圓的方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和(2)【解析】(1)求出,然后可得答案;(2)由條件可得,設(shè),則,然后利用導(dǎo)數(shù)可得在上單調(diào)遞增,,然后分、兩種情況討論求解即可.【小問1詳解】由題可得令,得;令,得,所以f(x)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和【小問2詳解】由,得,即設(shè),則設(shè),則當時,,,所以所以即在上單調(diào)遞增,則若,則,所以h(x)在上單調(diào)遞增所以h(x)≥h(0)=0恒成立,符合題意若a>2,則,必存在正實數(shù),滿足:當時,,h(x)單調(diào)遞減,此時h(x)<h(0)=0,不符合題意綜上所述,a的取值范圍是18、(1);(2)或.【解析】(1)根據(jù)短軸長求出b,根據(jù)M在C上求出a;(2)根據(jù)題意設(shè)直線l為,與橢圓方程聯(lián)立得根與系數(shù)關(guān)系,根據(jù)=即可求出m的值.【小問1詳解】∵短軸長為2,∴,∴,又∵點在C上,∴,∴,∴橢圓C的標準方程為;【小問2詳解】由(1)知,∵當直線l斜率為0時,不符合題意,∴設(shè)直線l的方程為:,聯(lián)立,消x得:,∵,∴設(shè),,則,∵,∴,∴,即,解得,∴直線l的方程為:或.19、(1)2,;(2)答案見解析.【解析】(1)根據(jù),求出范圍,再根據(jù)正弦函數(shù)的圖像即可求值域;(2)根據(jù)正弦函數(shù)圖像變換對解析式的影響即可求解.【小問1詳解】當時,有,可得,故,則的最大值為2,最小值為.【小問2詳解】先將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象;然后把所得圖象上各點的縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,得到函數(shù)的圖象;最后把所得圖象上各點的橫坐標不變,縱坐標伸長為原來的2倍,這時得到的就是函數(shù)的圖象.20、(1)(2)【解析】(1)求出PM,就可以求PQ的范圍;(2)使用待定系數(shù)法求出切線的方程,再求求切點的坐標,從而可以求切點的連線的方程.【小問1詳解】如下圖所示,因為圓的方程可化為,所以圓心,半徑,且,所以,故取值范圍為.【小問2詳解】可知切線,中至少一條的斜率存在,設(shè)為,則此切線為即,由圓心到此切線的距離等于半徑,即,得所以兩條切線的方程為和,于是由聯(lián)立方程組得兩切點的坐標為和所以故直線的方程為即21、(1)F為BD的中點,證明見解析;(2).【解析】(1)由為的中點,取的中點,連接易證四邊形為平行四邊形,得到,再利用線面平行的判定定理證明;(2)根據(jù)題意可得平面ABC與平面AFC的夾角為二面角,取的中點H為坐標原點,建立空間直角坐標系,分別求得平面的一個法向量,平面的一個法向量,設(shè)二面角為,由求解.【小問1詳解】為的中點.如圖:取的中點,連接∵,分別為,的中點,∴且∵且∴平行且等于∴四邊形為平行四邊形,則∵平面ABC,平面ABC∴平面ABC【小問2詳解】由題意知,平面ABC與平面AFC的夾角為二面角,取的中點H為坐標原點,建立如圖所示的空間直角坐標系.因為三角形為等腰三角形,易求,則,,所以,,設(shè)平面的一個法向量為,則,即,解得設(shè)平面的一個法向量為,則,即,解得設(shè)二面角為,則,因為二面角為銳角,所以余弦值為.22、(1)2(2)當時,沒有極值;當時,極大值為,極小值為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論