2024屆江蘇省海安市南莫中學高二上數學期末考試模擬試題含解析_第1頁
2024屆江蘇省海安市南莫中學高二上數學期末考試模擬試題含解析_第2頁
2024屆江蘇省海安市南莫中學高二上數學期末考試模擬試題含解析_第3頁
2024屆江蘇省海安市南莫中學高二上數學期末考試模擬試題含解析_第4頁
2024屆江蘇省海安市南莫中學高二上數學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省海安市南莫中學高二上數學期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等比數列的公比,中有連續四項在集合中,則等于()A. B.C D.2.在公比為的等比數列中,前項和,則()A.1 B.2C.3 D.43.已知,分別是圓和圓上的動點,點在直線上,則的最小值是()A. B.C. D.4.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.5.已知圓過點,,且圓心在軸上,則圓的方程是()A. B.C. D.6.已知拋物線=的焦點為F,M、N是拋物線上兩個不同的點,若,則線段MN的中點到y軸的距離為()A.8 B.4C. D.97.已知函數,則等于()A.0 B.2C. D.8.在等比數列中,,則的公比為()A. B.C. D.9.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當取最大值時的值為()A. B.C. D.10.如果向量,,共面,則實數的值是()A. B.C. D.11.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.如圖,空間四邊形OABC中,,,,點M在上,且滿足,點N為BC的中點,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平行四邊形內接于橢圓,且的斜率之積為,則橢圓的離心率為________14.數列滿足,則__________.15.若、是雙曲線的左右焦點,過的直線與雙曲線的左右兩支分別交于,兩點.若為等邊三角形,則雙曲線的離心率為________.16.二項式的展開式中,項的系數為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某小學調查學生跳繩的情況,在五年級隨機抽取了100名學生進行測試,得到頻率分布直方圖如下,且規定積分規則如下表:每分鐘跳繩個數得分17181920(1)求頻率分布直方圖中,跳繩個數在區間的小矩形的高;(2)依據頻率分布直方圖,把第40百分位數劃為合格線,低于合格分數線的學生需補考,試確定本次測試的合格分數線;(3)依據積分規則,求100名學生的平均得分.18.(12分)已知公差不為0的等差數列滿足:且成等比數列(1)求數列的通項公式;(2)記為數列的前n項和,求證是等差數列19.(12分)已知直線l過定點(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標軸上的截距相等,求直線l的方程20.(12分)已知圓與軸相切,圓心在直線上,且到直線的距離為(1)求圓的方程;(2)若圓的圓心在第一象限,過點的直線與相交于、兩點,且,求直線的方程21.(12分)從某居民區隨機抽取2021年的10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數據資料,計算得,,,(1)求家庭的月儲蓄對月收入的線性回歸方程;(2)判斷變量與之間是正相關還是負相關;(3)利用(1)中的回歸方程,分析2021年該地區居民月收入與月儲蓄之間的變化情況,并預測當該居民區某家庭月收入為7千元,該家庭的月儲蓄額.附:線性回歸方程系數公式中,,,其中,為樣本平均值22.(10分)已知圓的圓心在直線,且與直線相切于點.(1)求圓的方程;(2)直線過點且與圓相交,所得弦長為,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】經分析可得,等比數列各項的絕對值單調遞增,將五個數按絕對值的大小排列,計算相鄰兩項的比值,根據等比數列的定義即可求解.【詳解】因為等比數列中有連續四項在集合中,所以中既有正數項也有負數項,所以公比,因為,所以,且負數項為相隔兩項,所以等比數列各項的絕對值單調遞增,按絕對值排列可得,因,,,,所以是中連續四項,所以,故選:C.2、C【解析】先利用和的關系求出和,再求其公比.【詳解】由,得,,所以,,則.故選:C.3、B【解析】由已知可得,,求得關于直線的對稱點為,則,計算即可得出結果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設關于直線的對稱點為,則解得,則因為,分別在圓和圓上,所以,,則因為,所以故選:B.4、D【解析】由題設可得求出橢圓參數,即可得方程.【詳解】由題設,知:,可得,則,∴C的方程為.故選:D.5、B【解析】根據圓心在軸上,設出圓的方程,把點,的坐標代入圓的方程即可求出答案.【詳解】因為圓的圓心在軸上,所以設圓的方程為,因為點,在圓上,所以,解得,所以圓的方程是.故選:B.6、B【解析】過分別作垂直于準線,垂足為,則由拋物線的定義可得,再過MN的中點作垂直于準線,垂足為,然后利用梯形的中位線定理可求得結果【詳解】拋物線=的焦點,準線方程為直線如圖,過分別作垂直于準線,垂足為,過MN的中點作垂直于準線,垂足為,則由拋物線的定義可得,因為,所以,因為是梯形的中位線,所以,所以線段MN的中點到y軸的距離為4,故選:B7、D【解析】先通過誘導公式將函數化簡,進而求出導函數,然后算出答案.【詳解】由題意,,故選:D.8、D【解析】利用等比數列的性質把方程都變成和有關的式子后進行求解.【詳解】由等比數列的等比中項性質可得,又,所以,因,所以,所以,故選:D.9、D【解析】由橢圓的定義及雙曲線的定義結合余弦定理可得,,的關系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當且僅當,即,時等號成立,此時故選:D10、B【解析】設,由空間向量的坐標運算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設,可得,解得.故選:B.11、B【解析】根據方程表示橢圓,且2,再判斷必要不充分條件即可.【詳解】解:方程表示橢圓滿足,解得,且2所以“”是“方程表示橢圓”的必要不充分條件.故選:B12、B【解析】由空間向量的線性運算求解【詳解】由題意,又,,,∴,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據對稱性設,,,根據得到,再求離心率即可.【詳解】由對稱性,,關于原點對稱,設,,,,故.故答案為:14、【解析】對遞推關系多遞推一次,再相減,可得,再驗證是否滿足;【詳解】∵①時,②①-②得,時,滿足上式,.故答案為:.【點睛】數列中碰到遞推關系問題,經常利用多遞推一次再相減的思想方法求解.15、【解析】根據雙曲線的定義算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等邊三角形得∠F1AF2=120°,利用余弦定理算出c=a,結合雙曲線離心率公式即可算出雙曲線C的離心率.【詳解】因為△ABF2為等邊三角形,可知,A為雙曲線上一點,,B為雙曲線上一點,則,即,∴由,則,已知,在△F1AF2中應用余弦定理得:,得c2=7a2,則e2=7?e=故答案為:【點睛】方法點睛:求雙曲線的離心率,常常不能經過條件直接得到a,c的值,這時可將或視為一個整體,把關系式轉化為關于或的方程,從而得到離心率的值.16、80【解析】利用二項式的通項公式進行求解即可.【詳解】二項式的通項公式為:,令,所以項的系數為,故答案為:80三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)分【解析】(1)根據頻率之和為列方程來求得跳繩個數在區間的小矩形的高.(2)根據百分位數的計算方法計算出合格分數線.(3)根據平均數的求法求得名學生的平均得分.【小問1詳解】設跳繩個數在區間的小矩形的高為,則,解得.【小問2詳解】第一組的頻率為,第二組的頻率為,第三組的頻率為,第四組的頻率為,第五組的頻率為,第六組的頻率為,所以第百分位數為.也即合格分數線為.【小問3詳解】名學生的平均得分為分.18、(1);(2)證明見解析.【解析】(1)根據等比中項的應用可得,結合等差數列的定義和求出公差,進而得出通項公式;(2)根據等差數列前n項求和公式可得,結合等差數列定義即可證明.【小問1詳解】設等差數列的公差為(),由成等比數列,得,又,所以,解得,所以;【小問2詳解】由(1)可得,所以,有,故,又,所以數列是以2為首項,以2為公差的等差數列.19、(1)(2)或【解析】(1)求出直線的斜率可得l的斜率,再借助直線點斜式方程即可得解.(2)按直線l是否過原點分類討論計算作答.【小問1詳解】直線的斜率為,于是得直線l的斜率,則,即,所以直線l的方程是:.【小問2詳解】因直線l在兩坐標軸上的截距相等,則當直線l過原點時,直線l的方程為:,即,當直線l不過原點時,設其方程為:,則有,解得,此時,直線l的方程為:,所以直線l的方程為:或.20、(1)或(2)或【解析】(1)設圓心的坐標為,則該圓的半徑長為,利用點到直線的距離公式可求得的值,即可得出圓的標準方程;(2)利用勾股定理可求得圓心到的距離,分析可知直線的斜率存在,設直線的方程為,利用點到直線的距離公式可求得關于的方程,解出的值,即可得出直線的方程.【小問1詳解】解:設圓心的坐標為,則該圓的半徑長為,因為圓心到直線的距離為,解得,所以圓心的坐標為或,半徑為,因此,圓的標準方程為或.【小問2詳解】解:若圓的圓心在第一象限,則圓的標準方程為.因為,所以圓心到直線的距離.若直線的斜率不存在,則直線的方程為,此時圓心到直線的距離為,不合乎題意;所以,直線的斜率存在,可設直線的方程為,即,由題意可得,解得,所以,直線的方程為或,即或.21、(1)=0.3x-0.4(2)正相關(3)1.7千元【解析】(1)由題意得到n=10,求得,進而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【小問1詳解】由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.【小問2詳解】因為,所以變量y的值隨x的值增加而增加,故x與y之間是正相關.【小問3詳解】將x=7代入回歸方程可以預測該家庭的月儲蓄為=0.3×7-0.4=1.7(千元).22、(1)(2)或【解析】(1)分析可知圓心在直線上,聯立兩直線方程,可得出圓心的坐標,計算出圓的半徑,即可得出圓的方程;(2)利用勾股定理求出圓心到直線的距

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論