




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆河南省鄭州外國語中學數學高二上期末學業水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列是公差為等差數列,,則()A.1 B.3C.6 D.92.已知,,則等于()A.2 B.C. D.3.圓關于直線對稱,則的最小值是()A. B.C. D.4.如圖,過拋物線的焦點的直線交拋物線于點、,交其準線于點,若,且,則的值為()A. B.C. D.5.設實數x,y滿足,則目標函數的最大值是()A. B.C.16 D.326.已知數列中,,則()A. B.C. D.7.瑞士數學家歐拉1765年在其所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點,,其歐拉線方程為,則頂點的坐標可以是()A. B.C. D.8.參加抗疫的300名醫務人員,編號為1,2,…,300.為了解這300名醫務人員的年齡情況,現用系統抽樣的方法從中抽取15名醫務人員的年齡進行調查.若抽到的第一個編號為6,則抽到的第二個編號為()A.21 B.26C.31 D.369.拋物線的焦點坐標為A. B.C. D.10.直線的傾斜角的大小為()A. B.C. D.11.在中國古代,人們用圭表測量日影長度來確定節氣,一年之中日影最長的一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣,其日影長依次成等差數列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺12.在中,角A,B,C所對的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側面積大小為____________.(結果保留)14.如圖,已知正方形邊長為,長方形中,,平面與平面互相垂直,是線段的中點,則異面直線與所成角的余弦值為______15.已知直線與圓交于,兩點,則的最小值為___________.16.已知一個四面體的每個頂點都在表面積為的球的表面上,且,,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為F,其中P為E的準線上一點,O是坐標原點,且(1)求拋物線E的方程;(2)過的直線與E交于C,D兩點,在x軸上是否存在定點,使得x軸平分?若存在,求出點M的坐標;若不存在,請說明理由18.(12分)已知函數f(x)=x3﹣3ax2+2bx在x=處有極大值.(1)求a、b的值;(2)求f(x)在[0,2]上的值域.19.(12分)已知函數在處的切線與軸平行(1)求的值;(2)判斷在上零點的個數,并說明理由20.(12分)已知在△ABC中,角A,B,C的對邊分別為a,b,c,且(1)求C;(2)若,求的最大值21.(12分)已知數列滿足,().(1)證明:數列是等比數列,并求出數列的通項公式;(2)數列滿足:(),求數列的前項和.22.(10分)設橢圓:()的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】結合等差數列的通項公式求得.【詳解】設公差,.故選:D2、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D3、C【解析】先求出圓的圓心坐標,根據條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關于直線對稱,該直線經過圓心,即,,,當且僅當,即時取等號,故選:C.4、B【解析】分別過點、作準線的垂線,垂足分別為點、,設,根據拋物線的定義以及直角三角形的性質可求得,結合已知條件求得,分析出為的中點,進而可得出,即可得解.【詳解】如圖,分別過點、作準線的垂線,垂足分別為點、,設,則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點,從而.故選:B.5、C【解析】求的最大值即求的最大值,根據約束條件畫出可行域,將目標函數看成直線,直線經過可行域內的點,將目標與直線的截距建立聯系,然后得到何時目標值取得要求的最值,進而求得的最大值,最后求出的最大值.【詳解】要求的最大值即求的最大值.根據實數,滿足的條件作出可行域,如圖.將目標函數化為.則表示直線在軸上的截距的相反數.要求的最大值,即求直線在軸上的截距最小值.如圖當直線過點時,在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.6、D【解析】由數列的遞推公式依次去求,直到求出即可.【詳解】由,可得,,,故選:D.7、C【解析】設出點C坐標,求出的重心并代入歐拉線方程,驗證并排除部分選項,余下選項再由外心、垂心驗證判斷作答.【詳解】設頂點的坐標為,則的重心坐標為,依題意,,整理得:,對于A,當時,,不滿足題意,排除A;對于D,當時,,不滿足題意,排除D;對于B,當時,,對于C,當時,,直線AB的斜率,線段AB中點,線段AB中垂線方程:,即,由解得:,于是得的外心,若點,則直線BC的斜率,線段BC中點,該點與點M確定直線斜率為,顯然,即點M不在線段BC的中垂線上,不滿足題意,排除B;若點,則直線BC的斜率,線段BC中點,線段BC中垂線方程為:,即,由解得,即點為的外心,并且在直線上,邊AB上的高所在直線:,即,邊BC上的高所在直線:,即,由解得:,則的垂心,此時有,即的垂心在直線上,選項C滿足題意.故選:C【點睛】結論點睛:的三頂點,則的重心為.8、B【解析】將300個數編號:001,002,003,,3000,再平均分為15個小組,然后按系統抽樣方法得解.【詳解】將300個數編號:001,002,003,,3000,再平均分為15個小組,則第一編號為006,第二個編號為.故選:B.9、D【解析】拋物線的標準方程為,從而可得其焦點坐標【詳解】拋物線的標準方程為,故其焦點坐標為,故選D.【點睛】本題考查拋物線的性質,屬基礎題10、B【解析】由直線方程,可知直線的斜率,設直線的傾斜角為,則,又,所以,故選11、A【解析】由題意可知,十二個節氣其日影長依次成等差數列,設冬至日的日影長為尺,公差為尺,利用等差數列的通項公式,求出,即可求出,從而得到答案【詳解】設從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣其日影長依次成等差數列{},如冬至日的日影長為尺,設公差為尺.由題可知,所以,,,,故選:A12、A【解析】由同角公式求出,根據三角形面積公式求出,根據余弦定理求出,根據正弦定理求出.【詳解】因為,所以,因為,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【點睛】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題設知:圓錐的軸截面為等邊三角形,進而求圓錐的底面周長,由扇形面積公式求圓錐的側面積大小.【詳解】由題設,圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側面積大小為.故答案為:.14、【解析】建立如圖所示的空間直角坐標系,求出,后可求異面直線所成角的余弦值.【詳解】長方形可得,因為平面與平面互相垂直,平面平面,平面,故平面,故可建立如圖所示的空間直角坐標系,則,故,,故.故答案為:15、【解析】先求出直線經過的定點,再求出圓心到定點的距離,數形結合即得解.【詳解】由題得,所以直線經過定點,圓的圓心為,半徑為.圓心到定點的距離為,當時,取得最小值,且最小值為.故答案為:816、【解析】由題意可得,該四面體的四個頂點位于一個長方體的四個頂點上,設長方體的長寬高為,由題意可得:,據此可得:,則球的表面積:,結合解得:.點睛:與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在;【解析】(1)設,利用向量坐標運算求出p即可;(2)設直線MC,MD的斜率分別為,,利用坐標計算恒成立,即可求解.【小問1詳解】拋物線的焦點為,設,則,因為,所以,得所以拋物線E的方程為【小問2詳解】假設在x軸上存在定點,使得x軸平分設直線的方程為,設點,,聯立,可得∵恒成立,∴,設直線MC,MD的斜率分別為,,則由定點,使得x軸平分,則,所以把根與系數的關系代入可得,得故存在滿足題意.綜上所述,在x軸上存在定點,使得x軸平分18、(1)(2)【解析】(1)由于在點處有極小值,所以,從而可求出、的值;(2)由(1)可得,得在區間上單調遞減,在區間上單調遞增,從而可求出其值域.【小問1詳解】因為函數在處有極大值,所以,①且②聯立①②得:;【小問2詳解】由(1)得,所以,由得;由得,所以,函數區間上單調遞減,在區間上單調遞增;又,所以在上的值域為.19、(1)0(2)f(x)在(0,π)上有且只有一個零點,理由見解析【解析】(1)利用導數的幾何意義求解;(2)由,可得,令,,,,利用導數法求解.【小問1詳解】解:,所以k=f′(0)=-a=0,所以a=0;【小問2詳解】由,可得,令,,所以,①當時,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上單調遞增,又因為g(0)=0,所以g(x)在上無零點;②當時,令,所以h′(x)=2cosxex<0,即h(x)在上單調遞減,又因為,h(π)=-eπ-1<0,所以存在,,所以g(x)在上單調遞增,在上單調遞減,因為,g(π)=-π<0,所以g(x)在上且只有一個零點;綜上所述:f(x)在(0,π)上有且只有一個零點20、(1);(2).【解析】(1)將題設條件化為,結合余弦定理即可知C的大小.(2)由(1)及正弦定理邊角關系可得,再應用輔助角公式、正弦函數的性質即可求最大值.【小問1詳解】由,得,即,由余弦定理得:,又,所以【小問2詳解】由(1)知:,則,設△ABC外接圓半徑為R,則,當時,取得最大值為21、(1)證明見解析,;(2).【解析】(1)將給定等式變形,計算即可判斷數列類型,再求出其通項而得解;(2)利用(1)的結論求出數列的通項,然后利用錯位相減法求解即得.【詳解】(1)因數列滿足,,則,而,于是數列是首項為1,公比為2的等比數列,,即,所以數列是等比數列,,;(2)由(1)知,則于是得,,所以數列的前項和.22、(1);(2)6.【解析】(1)本小題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025探索服務合同的試用期
- 2024年超臨界CO2萃取裝置膜生物反應器及其他項目資金申請報告代可行性研究報告
- 2025潤滑油銷售合同協議
- 2025全日制勞動合同
- 2025年國稅局合同制人員醫療險問題
- 2025勞動合同(教師)
- 2025宜昌市存量房買賣合同
- 2025《廣州市合同范本》
- 2025深圳市租賃合同協議
- 2025國內認證委托合同
- (三診)綿陽市高中2022級高三第三次診斷性考試 歷史試卷A卷(含答案)
- 麻醉專業考試試題及答案
- 2024華能四川能源開發有限公司下屬單位招聘筆試參考題庫附帶答案詳解
- 湖南省長沙市長郡教育集團2024-2025學年七年級下學期期中生物試題
- 鋼結構高處作業安全管理
- JJF 2221-2025導熱系數瞬態測定儀校準規范
- 山東省高中名校2025屆高三4月校際聯合檢測大聯考生物試題及答案
- 2025年武漢數學四調試題及答案
- 【MOOC】數學建模精講-西南交通大學 中國大學慕課MOOC答案
- 職業病防護設施與個體防護用品的使用和維護
- 2024年全國高中數學聯賽北京賽區預賽一試試題(解析版)
評論
0/150
提交評論