




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖南省湘南中學高二數學第一學期期末質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.2.據記載,歐拉公式是由瑞士著名數學家歐拉發現的,該公式被譽為“數學中的天橋”特別是當時,得到一個令人著迷的優美恒等式,將數學中五個重要的數(自然對數的底,圓周率,虛數單位,自然數的單位和零元)聯系到了一起,有些數學家評價它是“最完美的數學公式”.根據歐拉公式,復數的虛部()A. B.C. D.3.某程序框圖如圖所示,該程序運行后輸出的k的值是A.3 B.4C.5 D.64.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.5.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知直線與直線平行,則實數a值為()A.1 B.C.1或 D.7.如圖,是邊長為4的等邊三角形的中位線,將沿折起,使得點A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.8.為了解義務教育階段學校對雙減政策的落實程度,某市教育局從全市義務教育階段學校中隨機抽取了6所學校進行問卷調查,其中有4所小學和2所初級中學,若從這6所學校中再隨機抽取兩所學校作進一步調查,則抽取的這兩所學校中恰有一所小學的概率是()A. B.C. D.9.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}10.已知數列滿足,,則()A. B.C. D.11.若函數恰好有個不同的零點,則的取值范圍是()A. B.C. D.12.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若平面內兩定點A,B間的距離為2,動點P滿足,則的最小值為_________.14.如圖的形狀出現在南宋數學家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最上面一層有1個球,第二層有3個球,第三層有6個球…….設各層球數構成一個數列,其中,,,則______15.某校有高一學生人,高二學生人.為了解學生的學習情況,用分層抽樣的方法從該校高一高二學生中抽取一個容量為的樣本,已知從高一學生中抽取人,則________16.在空間直角坐標系Oxyz中,點在x,y,z軸上的射影分別為A,B,C,則四面體PABC的體積為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C對稱中心在原點,對稱軸為坐標軸,且,兩點(1)求橢圓C的方程;(2)設M、N分別為橢圓與x軸負半軸、y軸負半軸的交點,P為橢圓上在第一象限內一點,直線PM與y軸交于點S,直線PN與x軸交于點T,求證:四邊形MSTN的面積為定值18.(12分)在數列中,,,數列滿足(1)求證:數列是等比數列,并求出數列的通項公式;(2)數列前項和為,且滿足,求的表達式;(3)令,對于大于的正整數、(其中),若、、三個數經適當排序后能構成等差數列,求符合條件的數組.19.(12分)已知某學校的初中、高中年級的在校學生人數之比為9:11,該校為了解學生的課下做作業時間,用分層抽樣的方法在初中、高中年級的在校學生中共抽取了100名學生,調查了他們課下做作業的時間,并根據調查結果繪制了如下頻率分布直方圖:(1)在抽取的100名學生中,初中、高中年級各抽取的人數是多少?(2)根據頻率分布直方圖,估計學生做作業時間的中位數和平均時長(同一組中的數據用該組區間的中點值作代表);(3)另據調查,這100人中做作業時間超過4小時的人中2人來自初中年級,3人來自高中年級,從中任選2人,恰好1人來自初中年級,1人來自高中年級的概率是多少20.(12分)已知橢圓C:過兩點(1)求C的方程;(2)定點M坐標為,過C右焦點的直線與C交于P,Q兩點,判斷是否為定值?若是,求出該定值,若不是,請說明理由21.(12分)已知橢圓的離心率是,且過點.(1)求橢圓的標準方程;(2)若直線與橢圓交于A、B兩點,線段的中點為,為坐標原點,且,求面積的最大值.22.(10分)已知點,圓.(1)若直線l過點M,且被圓C截得的弦長為,求直線l的方程;(2)設O為坐標原點,點N在圓C上運動,線段的中點為P,求點P的軌跡方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據不等式性質及對數函數的單調性判斷命題的真假,根據大角對大邊及正弦定理可判斷命題的真假,再根據復合命題真假的判斷方法即可得出結論.【詳解】解:若,且,則,當時,,所以,當時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.2、D【解析】由歐拉公式的定義和復數的概念進行求解.【詳解】由題意,得,則復數的虛部為.故選:D.3、B【解析】循環體第一次運行后;第二次運行后;第三次運行后,第四次運行后;循環結束,輸出值為4,答案選B考點:程序框圖的功能4、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因為直線的傾斜角為45°,所以直線的斜率為,因為直線在軸上的截距是,所以所求的直線方程為,即,故選:B5、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據“小推大”的原則進行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.6、A【解析】根據兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經檢驗可知符合題意.故選:A7、A【解析】分別取的中點,易得,則點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,設外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點,在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,由為的中點,所以,因為平面平面,且平面平面,平面,所以平面,則,設外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷8、A【解析】由組合知識結合古典概型概率公式求解即可.【詳解】從這6所學校中隨機抽取兩所學校的情況共有種,這兩所學校中恰有一所小學的情況共有種,則其概率為.故選:A9、D【解析】根據集合交集的運算法則計算即可.【詳解】∵A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B={-2,-1,0}.故選:D.10、A【解析】根據遞推關系依次求出即可.【詳解】,,,,,.故選:A.11、D【解析】分析可知,直線與函數的圖象有個交點,利用導數分析函數的單調性與極值,數形結合可求得實數的取值范圍.【詳解】令,可得,構造函數,其中,由題意可知,直線與函數的圖象有個交點,,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數的圖象如下圖所示:由圖可知,當時,即當時,直線與函數的圖象有個交點,即函數有個零點.故選:D.12、D【解析】設AA1=2AB=2,因為,所以異面直線A1B與AD1所成角,,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立直角坐標系,設出P的坐標,求出軌跡方程,然后推出的表達式,轉化求解最小值即可.【詳解】以經過A,B的直線為x軸,線段AB的垂直平分線為y軸建立直角坐標系.則設,由,則,所以兩邊平方并整理得,所以P點的軌跡是以(3,0)為圓心,為半徑的圓,所以,,則有,則的最小值為.故答案為:.14、15【解析】由分析可知每次小球數量剛好是等差數列的求和,最后直接公式即可算出答案.【詳解】由題意可知,,所以,故答案為:1515、【解析】根據分層抽樣的等比例性質列方程,即可樣本容量n.【詳解】由分層抽樣的性質知:,可得.故答案為:16、2【解析】將物體放入長方體中,切割處理求得體積.【詳解】如圖所示:四面體PABC可以看成以1,2,3為棱長的長方體切去四個全等的三棱錐,所以四面體PABC的體積為.故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)設橢圓方程為,利用待定系數法求得的值,即可得出答案;(2)設,,,易得,分別求出直線PM和直線PN的方程,從而可求出的坐標,再根據即可得出答案.【小問1詳解】解:依題意設橢圓方程為,將,代入得,解得得,,∴所求橢圓方程為;【小問2詳解】證明:設,,,,P點坐標滿足,即,直線PM:,可得,直線PN:,可得,.18、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數列的定義可證得結論成立,確定等比數列的首項和公比,可求得數列的通項公式;(2)求得,然后分、兩種情況討論,結合裂項相消法可得出的表達式;(3)求得,分、、三種情況討論,利用奇數與偶數的性質以及整數的性質可求得、的值,綜合可得出結論.【小問1詳解】解:由可得,,則,,以此類推可知,對任意的,,則,故數列為等比數列,且該數列的首項為,公比為,故,可得.【小問2詳解】解:由(1)知,所以,所以,當n=1時,,當時,.因為滿足,所以.【小問3詳解】解:,、、這三項經適當排序后能構成等差數列,①若,則,所以,,又,所以,,則;②若,則,則,左邊為偶數,右邊為奇數,所以,②不成立;③若,同②可知③也不成立綜合①②③得,19、(1)初中、高中年級所抽取人數分別為45、55(2)2.375小時,2.4小時(3)【解析】(1)依據分層抽樣的原則列方程即可解決;(2)依據頻率分布直方圖計算學生做作業時間的中位數和平均時長即可;(3)依據古典概型即可求得恰好1人來自初中年級,1人來自高中年級的概率.【小問1詳解】設初中、高中年級所抽取人數分別為x、y,由已知可得,解得;【小問2詳解】的頻率為,的頻率為,的頻率為因為,,所以中位數在區間上,設為x,則,解得,所以學生做作業時間的中位數為2.375小時;平均時長為小時.故估計學生做作業時間的中位數為2.375小時,平均時長為2.4小時【小問3詳解】2人來自初中年級,記為,,3人來自高中年級,記為,,,則從中任選2人,所有可能結果有:,,,,,,,,,共10種,其中恰好1人來自初中年級,1人來自高中年級有6種可能,所以恰好1人來自初中年級,1人來自高中年級的概率為20、(1);(2)為定值.【解析】(1)根據題意,列出的方程組,求解即可;(2)對直線的斜率是否存在進行討論,當直線斜率存在時,設出直線的方程,聯立橢圓方程,利用韋達定理,轉化,求解即可.【小問1詳解】因為橢圓過兩點,故可得,解得,故橢圓方程為:.【小問2詳解】由(1)可得:,故橢圓的右焦點的坐標為;當直線的斜率不存在時,此時直線的方程為:,代入橢圓方程,可得,不妨取,又,故.當直線的斜率存在時,設直線的方程為:,聯立橢圓方程,可得:,設坐標為,故可得,則.綜上所述,為定值.【點睛】本題考察橢圓方程的求解,以及橢圓中的定值問題;處理問題的關鍵是合理的利用韋達定理,將目標式進行轉化,屬中檔題.21、(1);(2)2.【解析】(1)根據已知條件列出關于a、b、c的方程組即可求得橢圓標準方程;(2)直線l和x軸垂直時,根據已知條件求出此時△AOB面積;直線l和x軸不垂直時,設直線方程為點斜式y=kx+t,代入橢圓方程得二次方程,結合韋達定理和弦長得k和t關系,表示出△AOB的面積,結合基本不等式即可求解三角形面積最值.【小問1詳解】由題知,解得,∴橢圓的標準方程為.【小問2詳解】當軸時,位于軸上,且,由可得,此時;當不垂直軸時,設直線的方程為,與橢圓交于,,由,得.得,,從而已知,可得.∵.設到直線的距離為,則,結合化簡得此時的面積最大,最大值為2.當且僅當即時取等號,綜上,的面積的最大值為2.22、(1)或
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車制造行業年終述職
- 蔬菜批發市場購銷合同范本
- 工程承包-蓄水池合同樣本
- 家庭承包土地合同書
- 2025年新疆烏魯木齊市多校聯考中考數學一模試卷
- 度鑄件采購框架合同
- 數控銑削加工技術電子教案 模塊五 1+X技能考核 任務一1+X技能考核數控銑初級試題
- 家居裝修工程合同報價清單
- 養護合同:綠植花卉租賃項目
- 秋季出行安全知識
- GB/T 20145-2006燈和燈系統的光生物安全性
- GB 21519-2008儲水式電熱水器能效限定值及能效等級
- 2023年陜西省學業水平考試物理試真題答案無
- 運輸供應商年度評價表
- 旅游項目融投資概述
- 全旅館業前臺從業人員資格證考試答案解析
- 十二經絡及腧穴課件
- 立式圓筒形儲罐罐底真空試驗記錄
- 公司新員工入職登記表(模板)
- 新疆大地構造單元劃分論文(董連慧)2017最新整理
- 辦公室工作存在問題(總結12篇)
評論
0/150
提交評論