


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一種增廣拉格朗日優(yōu)化方案及其非連續(xù)變形分析實現1.IntroductionTheaugmentedLagrangianoptimizationmethodisapowerfultechniqueforsolvingoptimizationproblemswithconstraints.ItcombinesthebenefitsofbothLagrangianandpenaltymethodsandhasbeenwidelyusedinvariousfieldsincludingengineering,economics,andfinance.However,thetraditionalaugmentedLagrangianmethodsuffersfromslowconvergenceandweakfeasibilityconditions.Toaddresstheseissues,severalenhancedversionsoftheaugmentedLagrangianmethodhavebeenproposed,oneofwhichistheaugmentingLagrangianwithnonlinearconstraints.Inthispaper,wepresentanovelaugmentedLagrangianoptimizationschemewithnonlinearconstraintsanddiscussitsnon-continuousdeformationanalysisimplementation.2.LiteratureReviewThetraditionalaugmentedLagrangianoptimizationmethodwasfirstintroducedbyHestenesandPowellin1969.Inthismethod,apenaltyfunctionisaddedtotheLagrangianfunctiontopenalizetheviolationofconstraints.However,thismethodhasslowconvergenceandweakfeasibilityconditions,whichcancausenumericalinstabilityinsomecases.Toovercometheselimitations,severalvariantsoftheaugmentedLagrangianmethodhavebeenproposed,suchasthemethodofmultipliers,thesequentialquadraticprogrammingmethod,andtheinteriorpointmethod.AnotherapproachistoincorporatenonlinearconstraintsintotheaugmentedLagrangianmethod.Thistechniquehasbeenshowntoimprovetheconvergencerateandfeasibilityconditions.ThenonlinearconstraintscanbeaddedtotheLagrangianfunctioninvariousforms,suchastheexponentialform,thelogarithmicform,orthepowerform.ThechoiceoftheformdependsontheproblemathandandthedesiredpropertiesoftheaugmentedLagrangianmethod.3.AugmentedLagrangianOptimizationSchemeInthispaper,weproposeanaugmentedLagrangianoptimizationschemewithnonlinearconstraints.TheschemeisbasedonthefollowingLagrangianfunction:L(x,λ,r)=f(x)+λ?g(x)+0.5?r?||g(x)||2wherexistheoptimizationvariable,λistheLagrangemultiplier,g(x)isthenonlinearconstraint,risthepenaltyparameter,and||?||denotesthenormofavector.TheLagrangianfunctioncombinestheobjectivefunctionf(x)withthenonlinearconstraintg(x)andapenaltytermthatpenalizestheviolationoftheconstraint.TheoptimizationproblemistofindxthatminimizestheLagrangianfunctionwithrespecttoλandr.Thiscanbeachievedbythefollowingiterationscheme:xk+1=argminxL(x,λk,rk)λk+1=λk+rk?g(xk+1)rk+1=α?rkwhereαisascalarthatcontrolstheincreaseinthepenaltyparameterateachiteration.Theiterationschemeupdatestheoptimizationvariablex,theLagrangemultiplierλ,andthepenaltyparameterrsequentially.Thealgorithmconvergeswhentheconstraintviolationissufficientlysmall,andtheoptimizationvariablesatisfiesthenecessaryconditionsforoptimality.TheproposedschemehasseveraladvantagesovertraditionalaugmentedLagrangianoptimizationmethods.Firstly,itincorporatesnonlinearconstraintsintotheoptimizationframework,whichcanimprovetheconvergencerateandfeasibilityconditions.Secondly,itusesaquadraticpenaltyterm,whichislessseverethanthelinearpenaltytermusedintraditionalmethods.Thiscanhelptoavoidnumericalinstabilitiesandimprovetheoverallperformanceofthealgorithm.4.Non-ContinuousDeformationAnalysisImplementationTheproposedaugmentedLagrangianoptimizationschemecanbeappliedtonon-continuousdeformationanalysisproblems.Non-continuousdeformationanalysisisatechniquethatsimulatesthedeformationofthree-dimensionalobjectsunderexternalloads.Itinvolvessolvingacomplexsetofequationsthatconsistofnonlinearconstraints,whichmakesitdifficulttoobtainanaccuratesolution.Toapplytheproposedschemetonon-continuousdeformationanalysis,weuseafiniteelementmethodtodiscretizethedeformationequations.ThenonlinearconstraintsarethenaddedtotheLagrangianfunction,andthepenaltyparameterischosenbasedonthestiffnessoftheobject.TheiterationschemeisusedtominimizetheLagrangianfunctionwithrespecttothedegreesoffreedomoftheobject.Thenon-continuousdeformationanalysisimplementationoftheproposedschemehasseveralbenefits.Firstly,itcanhandlecomplexthree-dimensionalobjectswithnonlinearmaterialproperties,whicharedifficulttosimulateusingtraditionalmethods.Secondly,itcanaccuratelypredictthebehaviorofastructureunderexternalloads,whichisimportantinengineeringandconstruction.5.ConclusionInthispaper,wepresentedanovelaugmentedLagrangianoptimizationschemewithnonlinearconstraintsanddiscusseditsnon-continuousdeformationanalysisimplementation.TheproposedschemehasseveraladvantagesovertraditionalaugmentedLagrangianoptimizationmethodsandcanbeappliedtonon-continuousdeformationanalysisproblems.Theimplementationoftheschemecanaccuratelypredicttheb
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)公司保潔合同范本
- 技術股合伙合同協(xié)議書
- 2025豪華轎車租賃使用合同
- 2025合同范本「打印」
- 2025辦公設備采購合同樣本
- 2025物流企業(yè)轉讓合同
- 購房合同之外協(xié)議書
- 員工合同協(xié)議書服裝店
- 婚慶合同協(xié)議書怎么寫的
- 無須履行合同的協(xié)議書
- 2024年四川省成都市中考數學試題含答案
- DL∕T 612-2017 電力行業(yè)鍋爐壓力容器安全監(jiān)督規(guī)程
- 自然資源價格評估通則 TD/T 1061-2021
- 貴州2024年貴州醫(yī)科大學招聘專職輔導員筆試歷年典型考題及考點附答案解析
- 2022版科學課程標準解讀-面向核心素養(yǎng)的科學教育(課件)
- 駕駛員心理健康教育培訓
- 【美妝網紅視頻對女大學生購買意愿的影響實證探析17000字(論文)】
- JT-T 1488-2024 網絡平臺道路貨物運輸服務規(guī)范
- 2024年四川二造《建設工程造價管理基礎知識》考前強化練習題庫300題(含解析)
- 全國蓄滯洪區(qū)建設與管理規(guī)劃090825
- 《客艙安全與應急處置》-課件:顛簸處置程序
評論
0/150
提交評論