




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.2.定義在上函數滿足,且對任意的不相等的實數有成立,若關于x的不等式在上恒成立,則實數m的取值范圍是()A. B. C. D.3.已知(i為虛數單位,),則ab等于()A.2 B.-2 C. D.4.已知集合,則()A. B.C. D.5.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.已知全集,則集合的子集個數為()A. B. C. D.7.直線x-3y+3=0經過橢圓x2a2+y2bA.3-1 B.3-12 C.8.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.9.已知,,,則的最小值為()A. B. C. D.10.在中,分別為所對的邊,若函數有極值點,則的范圍是()A. B.C. D.11.若函數在時取得最小值,則()A. B. C. D.12.已知函數的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數的解析式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足對任意,,則數列的通項公式__________.14.一個空間幾何體的三視圖及部分數據如圖所示,則這個幾何體的體積是___________15.在平面直角坐標系中,點在曲線:上,且在第四象限內.已知曲線在點處的切線為,則實數的值為__________.16.某校共有師生1600人,其中教師有1000人,現用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學生的人數為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形中,,E,F分別為,的中點.沿將矩形折起,使,如圖所示.設P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.18.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.19.(12分)在平面直角坐標系中,已知直線l的參數方程為(t為參數),在以坐標原點O為極點,x軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線C的極坐標方程是.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.20.(12分)已知函數,當時,有極大值3;(1)求,的值;(2)求函數的極小值及單調區間.21.(12分)若養殖場每個月生豬的死亡率不超過,則該養殖場考核為合格,該養殖場在2019年1月到8月養殖生豬的相關數據如下表所示:月份1月2月3月4月5月6月7月8月月養殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數/只293749537798126145(1)從該養殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據1月到8月的數據,求出月利潤y(十萬元)關于月養殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養殖中,月利潤與月養殖量仍然服從(2)中的關系,若9月份的養殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數據:.22.(10分)已知函數(,為自然對數的底數),.(1)若有兩個零點,求實數的取值范圍;(2)當時,對任意的恒成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數據求得外接球的半徑是解答本題的關鍵.2、B【解析】
結合題意可知是偶函數,且在單調遞減,化簡題目所給式子,建立不等式,結合導函數與原函數的單調性關系,構造新函數,計算最值,即可.【詳解】結合題意可知為偶函數,且在單調遞減,故可以轉換為對應于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數的基本性質和導函數與原函數單調性關系,計算范圍,可以轉化為函數,結合導函數,計算最值,即可得出答案.3、A【解析】
利用復數代數形式的乘除運算化簡,再由復數相等的條件列式求解.【詳解】,,得,..故選:.【點睛】本題考查復數代數形式的乘除運算,考查復數相等的條件,意在考查學生對這些知識的理解掌握水平,是基礎題.4、C【解析】
由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數軸求解.注意端點處是實心圓還是空心圓.5、B【解析】
先求出滿足的值,然后根據充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據條件與結論中參數的取值范圍進行判斷.6、C【解析】
先求B.再求,求得則子集個數可求【詳解】由題=,則集合,故其子集個數為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數,熟練掌握各自的定義是解本題的關鍵,是基礎題7、A【解析】
由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經過橢圓的左焦點F,令所以c=3,即橢圓的左焦點為F(-3,0)直線交y軸于C(0,1),所以,OF=因為FC=2CA,所以FA=3又由點A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點睛】本題考查了橢圓的幾何性質——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據一個條件得到關于a,b,c的齊次式,轉化為a,c的齊次式,然后轉化為關于e的方程,即可得8、A【解析】
根據題意得到,化簡得到,得到答案.【詳解】根據題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉化能力.9、B【解析】,選B10、D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數的極值.【方法點晴】本題考查余弦定理,函數的極值,涉及函數與方程思想思想、數形結合思想和轉化化歸思想,考查邏輯思維能力、等價轉化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉化化歸思想將原命題轉化為有兩個不等實根,從而可得.11、D【解析】
利用輔助角公式化簡的解析式,再根據正弦函數的最值,求得在函數取得最小值時的值.【詳解】解:,其中,,,故當,即時,函數取最小值,所以,故選:D【點睛】本題主要考查輔助角公式,正弦函數的最值的應用,屬于基礎題.12、A【解析】
先求出平移后的函數解析式,結合圖像的對稱性和得到A和.【詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數的圖像變換及性質.平移圖像時需注意x的系數和平移量之間的關系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用累加法求得數列的通項公式,由此求得的通項公式.【詳解】由題,所以故答案為:【點睛】本小題主要考查累加法求數列的通項公式,屬于基礎題.14、【解析】
先還原幾何體,再根據柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為【點睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎題15、【解析】
先設切點,然后對求導,根據切線方程的斜率求出切點的橫坐標,代入原函數求出切點的縱坐標,即可得出切得,最后將切點代入切線方程即可求出實數的值.【詳解】解:依題意設切點,因為,則,又因為曲線在點處的切線為,,解得,又因為點在第四象限內,則,.則又因為點在切線上.所以.所以.故答案為:【點睛】本題考查了導數的幾何意義,以及導數的運算法則和已知切線斜率求出切點坐標,本題屬于基礎題.16、1【解析】
直接根據分層抽樣的比例關系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學生的人數為6001.故答案為:1.【點睛】本題考查了分層抽樣的計算,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標系,求得半平面的法向量:,然后利用空間向量的相關結論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標系,則各點坐標為,,,所以,,設平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為【點睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.18、(1),(2)最大值,最小值【解析】
(1)由曲線的參數方程,得兩式平方相加求解,根據直線的極坐標方程,展開有,再根據求解.(2)因為曲線C是一個半圓,利用數形結合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【詳解】(1)因為曲線的參數方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【點睛】本題主要考查參數方程,普通方程及極坐標方程的轉化和直線與圓的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.19、(1)l:,C:;(2)【解析】
(1)直接利用轉換關系,把參數方程直角坐標方程和極坐標方程之間進行轉換;
(2)由(1)可得曲線是圓,求出圓心坐標及半徑,再求得圓心到直線的距離,即可求得的長.【詳解】(1)由題意可得直線:,由,得,即,所以曲線C:.(2)由(1)知,圓,半徑.∴圓心到直線的距離為:.∴【點睛】本題考查直線的普通坐標方程、曲線的直角坐標方程的求法,考查弦長的求法、運算求解能力,是中檔題.20、(1);(2)極小值為,遞減區間為:,遞增區間為.【解析】
(1)由題意得到關于實數的方程組,求解方程組,即可求得的值;(2)結合(1)中的值得出函數的解析式,即可利用導數求得函數的單調區間和極小值.【詳解】(1)由題意,函數,則,由當時,有極大值,則,解得.(2)由(1)可得函數的解析式為,則,令,即,解得,令,即,解得或,所以函數的單調減區間為,遞增區間為,當時,函數取得極小值,極小值為.當時,有極大值3.【點睛】本題主要考查了函數的極值的概念,以及利用導數求解函數的單調區間和極值,其中解答中熟記函數的極值的概念,以及函數的導數與原函數的關系,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21、(1);(2);(3)利潤約為111.2萬元.【解析】
(1)首先列出基本事件,然后根據古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養殖量x的平均值,然后根據公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據線性回歸方程代入9月份的數據即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎題.22、(1);(2)【解析】
(1)將有兩個零點轉化為方程有兩個相異實根,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超市新員工培訓知識
- 《人類的“老師”》課件-1
- 25年三月份私人引力子探測員設備靈敏度保證條款
- 2025年山東貨運從業資格考試題目大全答案及解析
- 2025年度第一季度應急儲備車輛輪換處置驗收協議
- 2025年外債及配套人民幣借款合同協議書
- 2025四月股半導體研發團隊2025期權池分配協議細則
- 2025合同能源管理協議
- 塔吊安全管理協議書二零二五年
- Vad血管通路裝置安全護理
- 2025年國家藥品監督管理局特殊藥品檢查中心招聘6人歷年高頻重點提升(共500題)附帶答案詳解
- 《礦井提升設備》課件2
- 被迫解除勞動合同通知書電子郵件
- 工具表單-崗位價值評估表(海氏)
- DB33T 2515-2022 公共機構“零碳”管理與評價規范
- 2025年-安徽省安全員知識題庫及答案
- 2024年中國酸奶乳品市場調查研究報告
- 外研版(2025新版)七年級下冊英語Unit 3 學情調研測試卷(含答案)
- 2024重慶市中考語文A卷真題寫作話題解讀與參考范文-漫畫“各有千秋”、“給校長的一封信”
- 《航模基礎知識》課件
- 勸學類3篇文言文中考語文復習
評論
0/150
提交評論