分數意義和性質數學知識點3篇_第1頁
分數意義和性質數學知識點3篇_第2頁
分數意義和性質數學知識點3篇_第3頁
分數意義和性質數學知識點3篇_第4頁
分數意義和性質數學知識點3篇_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1/1分數的意義和性質的數學知識點3篇分數的意義和性質的數學知識點11、分數的意義:把單位1*均分成若干份,表示這樣的一份或幾份的數,叫做分數。

2、分數單位:把單位1*均分成若干份,表示這樣的一份的數叫做分數單位。

3、分數與除法的關系:除法中的被除數相當于分數的分子,除數相等于分母,用字母表示:ab=(b0)。

4、真分數和假分數:分子比分母小的分數叫做真分數,真分數小于1。分子比分母大或分子和分母相等的分數叫做假分數,假分數大于1或等于1。由整數部分和分數部分組成的分數叫做帶分數。

5、假分數與帶分數的互化:把假分數化成帶分數,用分子除以分母,所得商作整數部分,余數作分子,分母不變。把帶分數化成假分數,用整數部分乘以分母加上分子作分子,分母不變。

6、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質。

7、最大公因數:幾個數共有的因數叫做它們的公因數,其中最大的一個叫做最大公因數。

8、互質數:公因數只有1的兩個數叫做互質數。

兩個數互質的特殊判斷方法:①1和任何大于1的自然數互質。②2和任何奇數都是互質數。③相鄰的兩個自然數是互質數。④相鄰的兩個奇數互質。⑤不相同的兩個質數互質。⑥當一個數是合數,另一個數是質數時(除了合數是質數的倍數情況下),一般情況下這兩個數也都是互質數。

9、最簡分數:分子和分母只有公因數1的分數叫做最簡分數。

10、約分:把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。

11、最小公倍數:幾個數共有的倍數叫做它們的.公倍數,其中最小的一個叫做最小公倍數。

12、通分:把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。

13、特殊情況下的最大公因數和最小公倍數:

①成倍數關系的兩個數,最大公因數就是較小的數,最小公倍數就是較大的數。②互質的兩個數,最大公因數就是1,最小公倍數就是它們的乘積。

14、分數的大小比較:同分母的分數,分子大的分數就大,分子小的分數就小;同分子的分數,分母大的分數反而小,分母小的分數反而大。

15、分數和小數的互化:小數化分數,一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾,去掉小數點作分子,能約分的必須約成最簡分數;分數化小數,用分子除以分母,除不盡的按要求保留幾位小數。

分數的意義和性質的數學知識點21、分數的意義:把單位1*均分成若干份,表示這樣的一份或幾份的數,叫做分數。

2、分數單位:把單位1*均分成若干份,表示這樣的一份的數叫做分數單位。

3、分數與除法的關系:除法中的被除數相當于分數的分子,除數相等于分母,用字母表示:ab=(b0)。

4、真分數和假分數:分子比分母小的分數叫做真分數,真分數小于1。分子比分母大或分子和分母相等的分數叫做假分數,假分數大于1或等于1。由整數部分和分數部分組成的分數叫做帶分數。

5、假分數與帶分數的互化:把假分數化成帶分數,用分子除以分母,所得商作整數部分,余數作分子,分母不變。把帶分數化成假分數,用整數部分乘以分母加上分子作分子,分母不變。

6、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質。

7、最大公因數:幾個數共有的因數叫做它們的公因數,其中最大的一個叫做最大公因數。

8、互質數:公因數只有1的兩個數叫做互質數。

兩個數互質的特殊判斷方法:①1和任何大于1的自然數互質。②2和任何奇數都是互質數。③相鄰的兩個自然數是互質數。④相鄰的兩個奇數互質。⑤不相同的兩個質數互質。⑥當一個數是合數,另一個數是質數時(除了合數是質數的倍數情況下),一般情況下這兩個數也都是互質數。

9、最簡分數:分子和分母只有公因數1的分數叫做最簡分數。

10、約分:把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。

11、最小公倍數:幾個數共有的`倍數叫做它們的公倍數,其中最小的一個叫做最小公倍數。

12、通分:把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。

13、特殊情況下的最大公因數和最小公倍數:

①成倍數關系的兩個數,最大公因數就是較小的數,最小公倍數就是較大的數。②互質的兩個數,最大公因數就是1,最小公倍數就是它們的乘積。

14、分數的大小比較:同分母的分數,分子大的分數就大,分子小的分數就小;同分子的分數,分母大的分數反而小,分母小的分數反而大。

15、分數和小數的互化:小數化分數,一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾,去掉小數點作分子,能約分的必須約成最簡分數;分數化小數,用分子除以分母,除不盡的按要求保留幾位小數。

分數的意義和性質的數學知識點3篇擴展閱讀

b,b>a

②傳遞性:a>b,b>ca>c

③可加性:a>ba+c>b+c

④可積性:a>b,c>0,ac>bc

⑤加法法則:a>b,c>d,a+c>b+d

⑥乘法法則:a>b>0,c>d>0,ac>bd

⑦乘方法則:a>b>0,an>bn(n∈N)

⑧開方法則:a>b>0

2、算術*均數與幾何*均數定理:

(1)如果a、b∈R,那么a2+b2≥2ab;(當且僅當a=b時等號)

(2)如果a、b∈R+,那么(當且僅當a=b時等號)推廣:

如果為實數,則重要結論

(1)如果積xy是定值P,那么當x=y時,和x+y有最小值2;

(2)如果和x+y是定值S,那么當x=y時,和xy有最大值S2/4。

數學知識點3、證明不等式的常用方法:

比較法:比較法是最基本、最重要的方法。

當不等式的兩邊的差能分解因式或能配成*方和的形式,則選擇作差比較法;當不等式的兩邊都是正數且它們的商能與1比較大小,則選擇作商比較法;碰到絕對值或根式,我們還可以考慮作*方差。

綜合法:從已知或已證明過的不等式出發,根據不等式的性質推導出欲證的不等式。綜合法的放縮經常用到均值不等式。

分析法:不等式兩邊的聯系不夠清楚,通過尋找不等式成立的充分條件,逐步將欲證的不等式轉化,直到尋找到易證或已知成立的結論。

會考數學知識點總結31.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。

2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1……(檢驗方程的解)。

4.列一元一次方程解應用題:

(1)讀題分析法:多用于“和,差,倍,分問題”

仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程。

(2)畫圖分析法:多用于“行程問題”

利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。

11.列方程解應用題的常用公式:

(1)行程問題:距離=速度·時間;

(2)工程問題:工作量=工效·工時;

(3)比率問題:部分=全體·比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

(5)商品價格問題:售價=定價·折·,利潤=售價—成本,;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

S正方形=a2,S環形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。

本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。

分數的意義和性質的數學知識點3篇(擴展8)

——初中數學知識點:因式分解知識點3篇

初中數學知識點:因式分解知識點11、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字"1"。

12、單項式的次數僅與字母有關,與單項式的系數無關。

初中數學知識點:因式分解知識點21、單項式和多項式統稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數式不是整式;而是今后將要學習的分式。

初中數學知識點:因式分解知識點31、整式加減的理論根據是:去括號法則,合并同類項法則,以及乘法分配率。

去括號法則:如果括號前是"十"號,把括號和它前面的"+"號去掉,括號里各項都不變符號;如果括號前是"一"號,把括號和它前面的"一"號去掉,括號里各項都改變符號。

2、同類項:所含字母相同,并且相同字母的指數也相同的項叫做同類項。

合并同類項:

1).合并同類項的概念:

把多項式中的同類項合并成一項叫做合并同類項。

2).合并同類項的法則:

同類項的系數相加,所得結果作為系數,字母和字母的指數不變。

3).合并同類項步驟:

a.準確的找出同類項。

b.逆用分配律,把同類項的系數加在一起(用小括號),字母和字母的指數不變。

c.寫出合并后的結果。

4).在掌握合并同類項時注意:

a.如果兩個同類項的系數互為相反數,合并同類項后,結果為0.

b.不要漏掉不能合并的'項。

c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

說明:合并同類項的關鍵是正確判斷同類項。

3、幾個整式相加減的一般步驟:

1)列出代數式:用括號把每個整式括起來,再用加減號連接。

2)按去括號法則去括號。

3)合并同類項。

4、代數式求值的一般步驟:

(1)代數式化簡

(2)代入計算

(3)對于某些特殊的代數式,可采用"整體代入"進行計算。

分數的意義和性質的數學知識點3篇(擴展9)

——小數除法的數學知識點(菁選3篇)

小數除法的數學知識點11、除數是整數的小數除法計算法則:除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添0再繼續除。

2、除數是小數的小數除法計算法則:除數是小數的除法,先移動除數的小數點,使它變成整數;除數的小數點向右移動幾位,被除數的小數點也向右移動幾位(位數不夠的,在被除數末尾用0補足),然后按照除數是整數的小數除法進行計算。

3、在小數除法中的發現:

①當除數大于1時,商小于被除數。如:3.55=0.7

②當除數小于1時,商大于被除數。如:3.50.5=7

4、小數除法的驗算方法:

①商除數=被除數(通用)②被除數商=除數

5、商的近似數:根據要求要保留的小數位數,決定商要除出幾位小數,再根據四舍五入法保留一定的小數位數,求出商的近似數。例如:要求保留一位小數的,商除到第二位小數可停下來;要求保留兩位小數的,商除到第三位小數停下來如此類推。

6、循環小數問題:

A、小數部分的位數是有限的小數,叫做有限小數。如,0.37、1.4135等。

B、小數部分的位數是無限的小數,叫做無限小數。如5.37.145145等。

C、一個數的小數部分,從某位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。(如5.33.123235.7171)

D、一個循環小數的小數部分,依次不斷重復的數字,叫做小數的循環節。(如5.333的循環節是3,4.6767的循環節是67,6.9258258的循環節是258)

E、用簡便方法寫循環小數的方法:

①只寫一個循環節,并在這個循環節的首位和末位上面記一個小圓點。

②例如:只有一個數字循環節的,就在這個數字上面記一個小圓點,5.333寫作5.3。有兩位小數循環的,各

在這兩位數字記上小圓點,7.4343寫作7.43。有三位或以上小數循環的,各在首位和末位記上小數點,

10.732732寫作10.732。

7、除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。②除數不變,被除數擴大,商隨著擴大。被除數不變,除數縮小,商擴大。③被除數不變,除數縮小,商擴大。

小數除法的數學知識點21.小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。

2.如:0.60.3表示已知兩個因數的`積0.6與其中的一個因數0.3,求另一個因數的運算。

3.小數除以整數的計算方法(P16):小數除以整數,按整數除法的方法去除。商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有余數,要添0再除。

4.(P21)除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按除數是整數的小數除法的法則進行計算。

5.注意:如果被除數的位數不夠,在被除數的末尾用0補足。

6.(P23)在實際應用中,小數除法所得的商也可以根據需要用四舍五入法保留一定的小數位數求出商的近似數。

7.(P24、25)除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。②除數不變,被除數擴大,商隨著擴大。被除數不變,除數縮小,商擴大。③被除數不變,除數縮小,商擴大。

8.(P28)循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。

9.循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如6.3232的循環節是32.

小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。

小數除法的數學知識點31、除數是整數的小數除法計算法則:

除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添0再繼續除。

2、除數是小數的小數除法計算法則:

除數是小數的除法,先移動除數的小數點,使它變成整數;除數的小數點向右移動幾位,被除數的小數點也向右移動幾位(位數不夠的,在被除數末尾用0補足),然后按照除數是整數的小數除法進行計算。

3、在小數除法中的發現:

①當除數大于1時,商小于被除數。如:3.5÷5=0.7

②當除數小于1時,商大于被除數。如:3.5÷0.5=7

4、小數除法的驗算方法:

①商×除數=被除數(通用)②被除數÷商=除數

5、商的近似數:

根據要求要保留的小數位數,決定商要除出幾位小數,再根據“四舍五入”法保留一定的小數位數,求出商的近似數。例如:要求保留一位小數的,商除到第二位小數可停下來;要求保留兩位小數的,商除到第三位小數停下來……如此類推。

6、循環小數問題:

A、小數部分的位數是有限的小數,叫做有限小數。如,0.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論