




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.12.若集合,則()A. B.C. D.3.已知集合,,則為()A. B. C. D.4.的展開式中的系數是-10,則實數()A.2 B.1 C.-1 D.-25.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.326.函數的圖象與函數的圖象的交點橫坐標的和為()A. B. C. D.7.已知集合,集合,則A. B.或C. D.8.已知集合,則()A. B. C. D.9.已知,,則()A. B. C.3 D.410.設函數在定義城內可導,的圖象如圖所示,則導函數的圖象可能為()A. B.C. D.11.《九章算術》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.12.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(為自然對數的底數,),若函數恰有個零點,則實數的取值范圍為__________________.14.根據如圖的算法,輸出的結果是_________.15.集合,,若是平面上正八邊形的頂點所構成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;16.若函數,其中且,則______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.18.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.19.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數;⑶試問的值是否與的大小無關,并證明你的結論.20.(12分)設函數.(1)當時,求不等式的解集;(2)若不等式恒成立,求實數a的取值范圍.21.(12分)已知函數的圖象向左平移后與函數圖象重合.(1)求和的值;(2)若函數,求的單調遞增區間及圖象的對稱軸方程.22.(10分)誠信是立身之本,道德之基,我校學生會創設了“誠信水站”,既便于學生用水,又推進誠信教育,并用“”表示每周“水站誠信度”,為了便于數據分析,以四周為一周期,如表為該水站連續十二周(共三個周期)的誠信數據統計:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計算表中十二周“水站誠信度”的平均數;(Ⅱ)若定義水站誠信度高于的為“高誠信度”,以下為“一般信度”則從每個周期的前兩周中隨機抽取兩周進行調研,計算恰有兩周是“高誠信度”的概率;(Ⅲ)已知學生會分別在第一個周期的第四周末和第二個周期的第四周末各舉行了一次“以誠信為本”的主題教育活動,根據已有數據,說明兩次主題教育活動的宣傳效果,并根據已有數據陳述理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.2、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.3、C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.4、C【解析】
利用通項公式找到的系數,令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數,考查學生的運算求解能力,是一道容易題.5、B【解析】
由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解。【詳解】由題意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B。【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據三視圖的規則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數量關系,利用相應公式求解。6、B【解析】
根據兩個函數相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數的圖象與函數的圖象交點的橫坐標的和,故選B.【點睛】本題主要考查三角函數的圖象及給值求角,側重考查數學建模和數學運算的核心素養.7、C【解析】
由可得,解得或,所以或,又,所以,故選C.8、C【解析】
解不等式得出集合A,根據交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎題.9、A【解析】
根據復數相等的特征,求出和,再利用復數的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數的特征和復數的模,屬于基礎題.10、D【解析】
根據的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據此可判斷的圖象.【詳解】由的圖象可知,在上為增函數,且在上存在正數,使得在上為增函數,在為減函數,故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數圖象的識別,此類問題應根據原函數的單調性來考慮導函數的符號與零點情況,本題屬于基礎題.11、B【解析】
利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現了數學運算、直觀想象等核心素養.12、B【解析】
根據角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
令,則,恰有四個解.由判斷函數增減性,求出最小值,列出相應不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導數在函數當中的應用,屬于難題.14、55【解析】
根據該For語句的功能,可得,可得結果【詳解】根據該For語句的功能,可得則故答案為:55【點睛】本題考查For語句的功能,屬基礎題.15、②③【解析】
根據對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.【點睛】本題考查了根據集合的交集求參數,意在考查學生的計算能力和轉化能力,利用對稱性是解題的關鍵.16、【解析】
先化簡函數的解析式,在求出,從而求得的值.【詳解】由題意,函數可化簡為,所以,所以.故答案為:0.【點睛】本題主要考查了二項式定理的應用,以及導數的運算和函數值的求解,其中解答中正確化簡函數的解析式,準確求解導數是解答的關鍵,著重考查了推理與運算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
若補充②③根據已知可得平面,從而有,結合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補充兩個條件,結果都一樣,以①②作為條件分析;(1)設,可得,進而求出梯形的面積,可求出,即可求出結論;(2),以為坐標原點,建立空間坐標系,求出坐標,由(1)得為平面的法向量,根據空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設平面為平面.∵,∴平面,而平面平面,∴,又為中點.設,則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標系,設,則,由(1)得為平面的一個法向量,因為,所以直線與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點,即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點睛】本題考查空間點、線、面位置關系,以及體積、直線與平面所成的角,考查計算求解能力,屬于中檔題.18、(1)詳見解析;(2).【解析】
(1)連接,設,可證得四邊形為平行四邊形,由此得到,根據線面平行判定定理可證得結論;(2)以為原點建立空間直角坐標系,利用二面角的空間向量求法可求得結果.【詳解】(1)連接,設,連接,在四棱柱中,分別為的中點,,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點,所在直線分別為軸建立空間直角坐標系.設,四邊形為正方形,,,則,,,,,,,設為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點睛】本題考查立體幾何中線面平行關系的證明、空間向量法求解二面角的問題;關鍵是能夠熟練掌握二面角的向量求法,易錯點是求得法向量夾角余弦值后,未根據圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號出現錯誤.19、(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設直線的斜率為,得直線MN:,聯立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設直線的斜率為,,則直線MN:聯立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關考點:(1)待定系數求橢圓方程;(2)橢圓簡單的幾何性質;(3)直線與圓錐曲線20、(1)(2)【解析】
(1)利用分段討論法去掉絕對值,結合圖象,從而求得不等式的解集;(2)求出函數的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當時,則所以不等式的解集為.(2)等價于,而,故等價于,所以或,即或,所以實數a的取值范圍為.【點睛】本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度一般.21、(1),;(2),,.【解析】
(1)直接利用同角三角函數關系式的變換的應用求出結果.(2)首先把函數的關系式變形成正弦型函數,進一步利用正弦型函數的性質的應用求出結果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調遞增區間為.,【點睛】本題考查的知識要點:三角函數關系式的恒等變換,正弦型函數的性質的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.22、(Ⅰ);(Ⅱ);(Ⅲ)兩次活動效果均好,理由詳見解析.【解析】
(Ⅰ)結合表中的數據,代入平均數公式求解即可;(Ⅱ)設抽到“高誠信度”的事件為,則抽到“一般信度”的事件為,則隨機抽取兩周,則有兩周為“高誠信度”事件為,利用列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程保證金合同范例
- 物業人員合同范例
- 二零二五版房地產開發商項目抵押合同范例
- 借款合同、收據范例
- 微商合作協議合同書
- 健身房私教合同范例x二零二五年
- 房產最高額抵押擔保合同書二零二五年
- 內墻粉砂漿合同范本
- 真石漆施工合同范本
- 酒店入住安全合同范本
- 美國睡眠醫學會睡眠及其相關事件判讀手冊規則、術語和技術規
- 國外保護非物質文化遺產的現狀
- 動火作業安全檢查表
- 李大釗簡介完
- 中考英語閱讀理解:圖表類(附參考答案)
- 農作物病蟲害防治服務投標方案(技術標)
- 【班級管理表格】學生檢討反思承諾書
- GSV2.0反恐安全管理手冊
- 應用文寫作說課稿 終稿
- 單位車輛領取免檢標志委托書范本
- 行政公文寫作-決定(應用文寫作課件)
評論
0/150
提交評論