安徽省明光市二中2023年高三3月份模擬考試數學試題含解析_第1頁
安徽省明光市二中2023年高三3月份模擬考試數學試題含解析_第2頁
安徽省明光市二中2023年高三3月份模擬考試數學試題含解析_第3頁
安徽省明光市二中2023年高三3月份模擬考試數學試題含解析_第4頁
安徽省明光市二中2023年高三3月份模擬考試數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數據分析、機器學習、服務器開發五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種2.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內切球所得截面面積為()A. B. C. D.3.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.44.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內部的一些虛線構成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關5.已知函數,其圖象關于直線對稱,為了得到函數的圖象,只需將函數的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變6.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.7.已知實數,,函數在上單調遞增,則實數的取值范圍是()A. B. C. D.8.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.9.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.610.()A. B. C.1 D.11.的展開式中有理項有()A.項 B.項 C.項 D.項12.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則的值為____14.滿足約束條件的目標函數的最小值是.15.已知等比數列的前項和為,,且,則__________.16.設隨機變量服從正態分布,若,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.18.(12分)在平面直角坐標系中,已知直線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的極坐標為,直線與曲線的交點為,求的值.19.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.20.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).21.(12分)已知函數,.(1)當時,①求函數在點處的切線方程;②比較與的大小;(2)當時,若對時,,且有唯一零點,證明:.22.(10分)已知函數.(1)證明:當時,;(2)若函數有三個零點,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

將人臉識別方向的人數分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數.【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數學思想方法,屬于基礎題.2、A【解析】

根據球的特點可知截面是一個圓,根據等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設內切球球心為,到平面的距離為,截面圓的半徑為,因為內切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.3、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。4、B【解析】

根據三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關鍵,屬于基礎題.5、D【解析】

由函數的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數的圖象關于直線對稱,得,即,解得,所以,,故只需將函數的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【點睛】本題考查三角函數的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題6、B【解析】

先設直線與圓相切于點,根據題意,得到,再由,根據勾股定理求出,從而可得漸近線方程.【詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質即可,屬于??碱}型.7、D【解析】

根據題意,對于函數分2段分析:當,由指數函數的性質分析可得①,當,由導數與函數單調性的關系可得,在上恒成立,變形可得②,再結合函數的單調性,分析可得③,聯立三個式子,分析可得答案.【詳解】解:根據題意,函數在上單調遞增,

當,若為增函數,則①,

當,若為增函數,必有在上恒成立,

變形可得:,

又由,可得在上單調遞減,則,

若在上恒成立,則有②,

若函數在上單調遞增,左邊一段函數的最大值不能大于右邊一段函數的最小值,則需有,③

聯立①②③可得:.

故選:D.【點睛】本題考查函數單調性的性質以及應用,注意分段函數單調性的性質.8、B【解析】

設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.9、C【解析】

根據列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數量積的運算,考查向量模的求法,屬于基礎題.10、A【解析】

利用復數的乘方和除法法則將復數化為一般形式,結合復數的模長公式可求得結果.【詳解】,,因此,.故選:A.【點睛】本題考查復數模長的計算,同時也考查了復數的乘方和除法法則的應用,考查計算能力,屬于基礎題.11、B【解析】

由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.12、B【解析】

由題中垂直關系,可得漸近線的方程,結合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】

根據的正負值,代入對應的函數解析式求解即可.【詳解】解:.故答案為:.【點睛】本題考查分段函數函數值的求解,是基礎題.14、-2【解析】

可行域是如圖的菱形ABCD,代入計算,知為最小.15、【解析】

由題意知,繼而利用等比數列的前項和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.【點睛】本題考查了等比數列的通項公式和求和公式,屬于中檔題.16、1【解析】

由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態分布的圖像和性質,意在考查學生對該知識的理解掌握水平和分析推理能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)1.【解析】

(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長a+b+c=5+7=1.【點睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.18、(1)(2)【解析】

(1)由公式可化極坐標方程為直角坐標方程;(2)把點極坐標化為直角坐標,直線的參數方程是過定點的標準形式,因此直接把參數方程代入曲線的方程,利用參數的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標方程為,即(2)點的直角坐標為,易知.設對應參數分別為將與聯立得【點睛】本題考查極坐標方程與直角坐標方程的互化,考查直線參數方程,解題時可利用利用參數方程的幾何意義求直線上兩點間距離問題.19、(1);(2)【解析】

(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設出直線方程,聯立方程組,用韋達定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,∵過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當直線的斜率不存在時,直線的斜率為0,此時(ii)當直線的斜率為零時,.(iii)當直線的斜率存在且不等于零時,設直線的方程為,聯立,得,設的橫坐標分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯立橢圓的方程消去,得設的橫坐標為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點睛】本題考查橢圓的標準方程與幾何性質、直線與圓錐曲線的位置關系的應用問題,解答此類題目,通常利用的關系,確定橢圓方程是基礎;通過聯立直線方程與橢圓方程建立方程組,應用一元二次方程根與系數,得到目標函數解析式,運用函數知識求解;本題是難題.20、(1)證明見解析;(2)2【解析】

(1)在中,利用勾股定理,證得,又由題設條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設三棱臺和三棱柱的高都為上、下底面之間的距離為,根據棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由,,平面,所以平面,因為平面,所以.(2)因為,可得,令,,設三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點睛】本題主要考查了直線與平面垂直的判定與應用,以及幾何體的體積公式的應用,其中解答中熟記線面位置關系的判定定理與性質定理,以及熟練應用幾何體的體積公式進行求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.21、(1)①見解析,②見解析;(2)見解析【解析】

(1)①把代入函數解析式,求出函數的導函數得到,再求出,利用直線方程的點斜式求函數在點處的切線方程;②令,利用導數研究函數的單調性,可得當時,;當時,;當時,.(2)由題意,,在上有唯一零點.利用導數可得當時,在上單調遞減,當,時,在,上單調遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調遞減,進一步得到在上單調遞增,由此可得.【詳解】解:(1)①當時,,,,又,切線方程為,即;②令,則,在上單調遞減.又,當時,,即;當時,,即;當時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當時,,在上單調遞減,當,時,,在,上單調遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調遞減,又,,.在上單調遞增,.【點睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論