2023屆浙江省高中聯盟高三下學期一模考試數學試題含解析_第1頁
2023屆浙江省高中聯盟高三下學期一模考試數學試題含解析_第2頁
2023屆浙江省高中聯盟高三下學期一模考試數學試題含解析_第3頁
2023屆浙江省高中聯盟高三下學期一模考試數學試題含解析_第4頁
2023屆浙江省高中聯盟高三下學期一模考試數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知、分別為雙曲線:(,)的左、右焦點,過的直線交于、兩點,為坐標原點,若,,則的離心率為()A.2 B. C. D.2.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.23.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.4.已知向量,,則與共線的單位向量為()A. B.C.或 D.或5.函數在上為增函數,則的值可以是()A.0 B. C. D.6.設復數,則=()A.1 B. C. D.7.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.328.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.9.己知函數的圖象與直線恰有四個公共點,其中,則()A. B.0 C.1 D.10.一個組合體的三視圖如圖所示(圖中網格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.11.已知函數,若函數有三個零點,則實數的取值范圍是()A. B. C. D.12.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數為_______________.14.如圖,在菱形ABCD中,AB=3,,E,F分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)15.若正三棱柱的所有棱長均為2,點為側棱上任意一點,則四棱錐的體積為__________.16.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.18.(12分)的內角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.19.(12分)已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.(1)求橢圓的方程;(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.20.(12分)已知橢圓:()的左、右焦點分別為和,右頂點為,且,短軸長為.(1)求橢圓的方程;(2)若過點作垂直軸的直線,點為直線上縱坐標不為零的任意一點,過作的垂線交橢圓于點和,當時,求此時四邊形的面積.21.(12分)如圖,在三棱錐中,平面平面,,.點,,分別為線段,,的中點,點是線段的中點.(1)求證:平面.(2)判斷與平面的位置關系,并證明.22.(10分)如圖,直三棱柱中,分別是的中點,.(1)證明:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

作出圖象,取AB中點E,連接EF2,設F1A=x,根據雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進而得到e的值【詳解】解:取AB中點E,連接EF2,則由已知可得BF1⊥EF2,F1A=AE=EB,設F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點睛】本題考查雙曲線定義的應用,考查離心率的求法,數形結合思想,屬于中檔題.對于圓錐曲線中求離心率的問題,關鍵是列出含有中兩個量的方程,有時還要結合橢圓、雙曲線的定義對方程進行整理,從而求出離心率.2、A【解析】

求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.3、C【解析】

根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.4、D【解析】

根據題意得,設與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點睛】本題考查向量的坐標運算以及共線定理和單位向量的定義.5、D【解析】

依次將選項中的代入,結合正弦、余弦函數的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數的單調性,涉及到誘導公式的應用,是一道容易題.6、A【解析】

根據復數的除法運算,代入化簡即可求解.【詳解】復數,則故選:A.【點睛】本題考查了復數的除法運算與化簡求值,屬于基礎題.7、A【解析】

根據三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎題.8、C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.9、A【解析】

先將函數解析式化簡為,結合題意可求得切點及其范圍,根據導數幾何意義,即可求得的值.【詳解】函數即直線與函數圖象恰有四個公共點,結合圖象知直線與函數相切于,,因為,故,所以.故選:A.【點睛】本題考查了三角函數的圖像與性質的綜合應用,由交點及導數的幾何意義求函數值,屬于難題.10、C【解析】

根據組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結構是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關鍵是要能由三視圖還原出組合幾何體,然后根據幾何體的結構求出其體積.11、B【解析】

根據所給函數解析式,畫出函數圖像.結合圖像,分段討論函數的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結合即可求得的范圍;對于當時,結合導函數,結合導數的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據題意,畫出函數圖像如下圖所示:函數的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.【點睛】本題考查了函數圖像的畫法,函數零點定義及應用,根據零點個數求參數的取值范圍,導數的幾何意義應用,屬于中檔題.12、C【解析】

根據線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據線面平行的性質定理,可得;若,根據線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

把按照二項式定理展開,可得的展開式中的系數.【詳解】解:,故它的展開式中的系數為,故答案為:.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.14、【解析】

根據題意,設,則,所以,解得,所以,從而有.15、【解析】

依題意得,再求點到平面的距離為點到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長均為2,則,點到平面的距離為點到直線的距離所以,所以.故答案為:【點睛】本題考查椎體的體積公式,考查運算能力,是基礎題.16、20【解析】

由三視圖知該幾何體是一個圓柱與一個半球的四分之三的組合,利用球體體積公式、圓柱體積公式計算即可.【詳解】由三視圖知,該幾何體是由一個半徑為2的半球的四分之三和一個底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點睛】本題考查三視圖以及幾何體體積,考查學生空間想象能力以及數學運算能力,是一道容易題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】

(1)要證明平面平面BDE,只需在平面內找一條直線垂直平面BDE即可;(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系∵BE與平面ABCD所成的角為,,,,,,.,設平面BEF的法向量為,,,設平面的法向量設二面角的大小為..【點睛】本題考查線面垂直證面面垂直、面面所成角的計算,考查學生的計算能力,解決此類問題最關鍵是準確寫出點的坐標,是一道中檔題.18、(1);(2)【解析】

試題分析:(1)根據余弦定理求出B,帶入條件求出,利用同角三角函數關系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據條件選擇正余弦定理,將問題轉化統一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.19、(1);(2)存在,且方程為或.【解析】

(1)依題意列出關于a,b,c的方程組,求得a,b,進而可得到橢圓方程;(2)聯立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點,則,結合韋達定理可得到參數值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當斜率不存在時,以為直徑的圓顯然不經過橢圓的左頂點,所以可設直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標分別為,,則,,而.要使以為直徑的圓過橢圓的左頂點,則,即,所以,整理解得或,所以存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點,直線的方程為或.【點睛】本題主要考查直線與圓錐曲線位置關系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉化為方程組關系問題,最終轉化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應注意不要忽視判別式的作用.20、(1)(2)【解析】

(1)依題意可得,解方程組即可求出橢圓的方程;(2)設,則,設直線的方程為,聯立直線與橢圓方程,消去,設,,列出韋達定理,即可表示,再根據求出參數,從而得出,最后由點到直線的距離得到,由即可得解;【詳解】解:(1)∵,∴解得,∴橢圓的方程為.(2)∵,∴可設,∴.∵,∴,∴設直線的方程為,∴,∴,顯然恒成立.設,,則,,∴.∴,∴,∴解得,解得,∴,,∴.∵此時直線的方程為,,∴點到直線的距離為,∴,即此時四邊形的面積為.【點睛】本題考查橢圓的標準方程及簡單幾何性質,直線與橢圓的綜合應用,考查計算能力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論