




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,三國時代數學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.20 B.27 C.54 D.642.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發時,裝上發往后面地的郵件各1件,到達后面各地后卸下前面各地發往該地的郵件,同時裝上該地發往后面各地的郵件各1件,記該郵車到達,,…各地裝卸完畢后剩余的郵件數記為.則的表達式為().A. B. C. D.3.已知定義在上的函數滿足,且當時,,則方程的最小實根的值為()A. B. C. D.4.公元前世紀,古希臘哲學家芝諾發表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜的倍.當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規律,若阿基里斯和烏龜的距離恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米5.設為拋物線的焦點,,,為拋物線上三點,若,則().A.9 B.6 C. D.6.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)7.我國古代數學著作《九章算術》有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認為莞草是蒲草的二倍長所需要的天數是()(結果采取“只入不舍”的原則取整數,相關數據:,)A. B. C. D.8.已知函數,則()A.2 B.3 C.4 D.59.若函數的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.10.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.11.已知向量,且,則m=()A.?8 B.?6C.6 D.812.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數在處的切線方程是____________.14.將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落.小球在下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.己知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是,則小球落入袋中的概率為__________.15.某種圓柱形的如罐的容積為個立方單位,當它的底面半徑和高的比值為______.時,可使得所用材料最省.16.設為偶函數,且當時,;當時,.關于函數的零點,有下列三個命題:①當時,存在實數m,使函數恰有5個不同的零點;②若,函數的零點不超過4個,則;③對,,函數恰有4個不同的零點,且這4個零點可以組成等差數列.其中,正確命題的序號是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)中的內角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.18.(12分)在直角坐標系中,曲線上的任意一點到直線的距離比點到點的距離小1.(1)求動點的軌跡的方程;(2)若點是圓上一動點,過點作曲線的兩條切線,切點分別為,求直線斜率的取值范圍.19.(12分)已知函數,.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設方程的實根為.令若存在,,,使得,證明:.20.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.21.(12分)已知兩數.(1)當時,求函數的極值點;(2)當時,若恒成立,求的最大值.22.(10分)已知函數.(1)當時,解不等式;(2)當時,不等式恒成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數大約為,利用概率模擬列方程即可求解。【詳解】設大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。2、D【解析】
根據題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數目,進而計算可得答案.【詳解】解:根據題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點睛】本題主要考查數列遞推公式的應用,屬于中檔題.3、C【解析】
先確定解析式求出的函數值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數與方程的根的最小值問題,涉及函數極大值、函數解析式的求法等知識,本題有一定的難度及高度,是一道有較好區分度的壓軸選這題.4、D【解析】
根據題意,是一個等比數列模型,設,由,解得,再求和.【詳解】根據題意,這是一個等比數列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數列的實際應用,還考查了建模解模的能力,屬于中檔題.5、C【解析】
設,,,由可得,利用定義將用表示即可.【詳解】設,,,由及,得,故,所以.故選:C.【點睛】本題考查利用拋物線定義求焦半徑的問題,考查學生等價轉化的能力,是一道容易題.6、C【解析】
根據并集的求法直接求出結果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎題.7、C【解析】
由題意可利用等比數列的求和公式得莞草與蒲草n天后長度,進而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長度分別為據題意得:,解得2n=12,∴n21.故選:C.【點睛】本題考查了等比數列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.8、A【解析】
根據分段函數直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數計算,意在考查學生的計算能力.9、D【解析】
由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數,利用導數研究函數單調性,分析即得解【詳解】函數的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數研究函數的零點,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.10、D【解析】
如圖所示,設的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質和線面垂直的性質可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.11、D【解析】
由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎題.12、B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出和的值,利用點斜式可得出所求切線的方程.【詳解】,則,,.因此,函數在處的切線方程是,即.故答案為:.【點睛】本題考查利用導數求函數的切線方程,考查計算能力,屬于基礎題.14、【解析】記小球落入袋中的概率,則,又小球每次遇到黑色障礙物時一直向左或者一直向右下落,小球將落入袋,所以有,則.故本題應填.15、【解析】
設圓柱的高為,底面半徑為,根據容積為個立方單位可得,再列出該圓柱的表面積,利用導數求出最值,從而進一步得到圓柱的底面半徑和高的比值.【詳解】設圓柱的高為,底面半徑為.∵該圓柱形的如罐的容積為個立方單位∴,即.∴該圓柱形的表面積為.令,則.令,得;令,得.∴在上單調遞減,在上單調遞增.∴當時,取得最小值,即材料最省,此時.故答案為:.【點睛】本題考查函數的應用,解答本題的關鍵是寫出表面積的表示式,再利用導數求函數的最值,屬中檔題.16、①②③【解析】
根據偶函數的圖象關于軸對稱,利用已知中的條件作出偶函數的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當時又因為為偶函數可畫出的圖象,如下所示:可知當時有5個不同的零點;故①正確;若,函數的零點不超過4個,即,與的交點不超過4個,時恒成立又當時,在上恒成立在上恒成立由于偶函數的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③【點睛】本題考查函數方程思想,數形結合思想,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)10【解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根據二倍角的余弦公式計算即可;(2)由已知可得,利用余弦定理解出,由已知計算出與,再根據三角形的面積公式求出結果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡得,,解得或(負值舍去),,,,,,的面積.【點睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應用,考查了二倍角公式的應用,考查了運算能力,屬于基礎題.18、(1);(2)【解析】
(1)設,根據題意可得點的軌跡方程滿足的等式,化簡即可求得動點的軌跡的方程;(2)設出切線的斜率分別為,切點,,點,則可得過點的拋物線的切線方程為,聯立拋物線方程并化簡,由相切時可得兩條切線斜率關系;由拋物線方程求得導函數,并由導數的幾何意義并代入拋物線方程表示出,可求得,結合點滿足的方程可得的取值范圍,即可求得的范圍.【詳解】(1)設點,∵點到直線的距離等于,∴,化簡得,∴動點的軌跡的方程為.(2)由題意可知,的斜率都存在,分別設為,切點,,設點,過點的拋物線的切線方程為,聯立,化簡可得,∴,即,∴,.由,求得導函數,∴,,,∴,因為點滿足,由圓的性質可得,∴,即直線斜率的取值范圍為.【點睛】本題考查了動點軌跡方程的求法,直線與拋物線相切的性質及應用,導函數的幾何意義及應用,點和圓位置關系求參數的取值范圍,屬于中檔題.19、(1)(2)證明見解析(3)證明見解析【解析】
(1)由題意可得,,令,利用導數得在上單調遞減,進而可得結論;(2)不等式轉化為,令,,利用導數得單調性即可得到答案;(3)由題意可得,進而可將不等式轉化為,再利用單調性可得,記,,再利用導數研究單調性可得在上單調遞增,即,即,即可得到結論.【詳解】(1),即,化簡可得.令,,因為,所以,.所以,在上單調遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設,則.在上,,所以在上單調遞減.在上,,所以在上單調遞增,所以.設,因為在上是減函數,所以.所以,即.(3)證明:方程在區間上的實根為,即,要證,由可知,即要證.當時,,,因而在上單調遞增.當時,,,因而在上單調遞減.因為,所以,要證.即要證.記,.因為,所以,則..設,,當時,.時,,故.且,故,因為,所以.因此,即在上單調遞增.所以,即.故得證.【點睛】本題考查函數的單調性、最值、函數恒成立問題,考查導數的應用,轉化思想,構造函數研究單調性,屬于難題.20、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結合絕對值不等式的性質即可證得題中的結論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省成都名校2025屆高三下期末質量調研(一模)化學試題含解析
- 清遠市英德市2025屆小升初考試數學試卷含解析
- 信陽航空職業學院《自然地理學原理》2023-2024學年第二學期期末試卷
- 景德鎮陶瓷職業技術學院《管理學英文》2023-2024學年第二學期期末試卷
- 江蘇省揚州高郵市2025屆高三下學期1月第一次聯合考試語文試題含解析
- 邵陽學院《運動解剖學(一)》2023-2024學年第二學期期末試卷
- 西北大學《資料庫系統》2023-2024學年第二學期期末試卷
- 湘潭醫衛職業技術學院《結構分析中的有限元法》2023-2024學年第二學期期末試卷
- 呼倫貝爾職業技術學院《生物能源材料》2023-2024學年第二學期期末試卷
- 湖州職業技術學院《橋梁工程A(一)》2023-2024學年第二學期期末試卷
- 手術室清點制度落實缺陷查房
- 2023年廣東省佛山市順德區中考一模英語試題(含答案)
- 自動焊錫機烙鐵頭更換記錄表
- 幸福家庭詳細攻略
- 設備安裝調試驗收單
- 英語答題卡2023年全國小學生英語能力測評(NEPTP)低年級組
- 國家開放大學《哲學基礎》形考任務1-3參考答案
- AFP急性弛緩性麻痹
- 雙眼視與斜視弱視學智慧樹知到答案章節測試2023年溫州醫科大學
- GB 4806.7-2016食品安全國家標準食品接觸用塑料材料及制品
- 任命書范本(施工單位)
評論
0/150
提交評論