




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區的她2023年湖南體育職業學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若一個橢圓長軸的長度、短軸的長度和焦距成等差數列,則該橢圓的離心率是(
)
A.
B.
C.
D.答案:B2.甲、乙、丙、丁四位同學各自對A、B兩個變量的線性相關性作試驗,并用回歸分析方法分別求得相關系數r與殘差平方和m如表:
則哪位同學的實驗結果體現A、B兩個變量更強的線性相關性()
A.丙
B.乙
C.甲
D.丁答案:C3.函數f(x)=ax(a>0且a≠1)在區間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當a>1時,函數f(x)=ax(a>0且a≠1)在區間[1,2]上是增函數,由題意可得a2-a=a2,∴a=32.當1>a>0時,函數f(x)=ax(a>0且a≠1)在區間[1,2]上是減函數,由題意可得a-a2=a2,解得
a=12.綜上,a的值為12或32故選C.4.已知向量,滿足:||=3,||=5,且=λ,則實數λ=()
A.
B.
C.±
D.±答案:C5.已知圖所示的矩形,其長為12,寬為5.在矩形內隨同地措施1000顆黃豆,數得落在陰影部分的黃豆數為550顆.則可以估計出陰影部分的面積約為______.答案:∵矩形的長為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.6.曲線C:x=t-2y=1t+1(t為參數)的對稱中心坐標是______.答案:曲線C:x=t-2y=1t+1(t為參數)即y-1=1x+2,其對稱中心為(-2,1).故為:(-2,1).7.斜二測畫法的規則是:
(1)在已知圖形中建立直角坐標系xoy,畫直觀圖
時,它們分別對應x′和y′軸,兩軸交于點o′,使∠x′o′y′=______,它們確定的平面表示水平平面;
(2)
已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成
______;
(3)已知圖形中平行于x軸的線段的長度,在直觀圖中
______;平行于y軸的線段,在直觀圖中
______.答案:按照斜二測畫法的規則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長度不變;長度減半8.過拋物線y=ax2(a>0)的焦點F作一直線交拋物線交于P、Q兩點,若線段PF、FQ的長分別為p、q,則1p+1q=______.答案:設PQ的斜率k=0,因拋物線焦點坐標為(0,14a),把直線方程y=14a
代入拋物線方程得x=±12a,∴PF=FQ=12a,從而
1p+1q=2a+2a=4a,故為:4a.9.有3名同學要爭奪2個比賽項目的冠軍,冠軍獲得者共有______種可能.答案:第一個項目的冠軍有3種情況,第二個項目的冠軍也有3種情況,根據分步計數原理,冠軍獲得者共有3×3=9種可能,故為9.10.在某次數學考試中,考生的成績X~N(90,100),則考試成績X位于區間(80,90)上的概率為______.答案:∵考生的成績X~N(90,100),∴正弦曲線關于x=90對稱,根據3?原則知P(80<x<100)=0.6829,∴考試成績X位于區間(80,90)上的概率為0.3413,故為:0.341311.下列各圖形不是函數的圖象的是()A.
B.
C.
D.
答案:由函數的概念,B中有的x,存在兩個y與x對應,不符合函數的定義,而ACD均符合.故選B12.在區間[0,1]產生的隨機數x1,轉化為[-1,3]上的均勻隨機數x,實施的變換為()
A.x=3x1-1
B.x=3x1+1
C.x=4x1-1
D.x=4x1+1答案:C13.若0<x<1,則2x,(12)x,(0.2)x之間的大小關系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數y=xn(0<n<1),利用冪函數的性質,∵0<n<1,∴冪函數y=xn在第一象限是增函數,又2>12>0.2∴2x>(12)x>(0.2)x故選D14.求證:若圓內接五邊形的每個角都相等,則它為正五邊形.答案:證明:設圓內接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個三角形∵OA=OB=OC=OD=OE=半徑,∴有五個等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因為所有內角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形15.P是以F1,F2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B16.已知正方體ABCD-A1B1C1D1,點E,F分別是上底面A1C1和側面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),則x=______;
(2)AE=AA1+xAB+yAD,則x=______,y=______;
(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.17.已知直線l的斜率為k=-1,經過點M0(2,-1),點M在直線上,以M0M的數量t為參數,則直線l的參數方程為______.答案:∵直線l經過點M0(2,-1),斜率為k=-1,傾斜角為3π4,∴直線l的參數方程為x=2+tcos3π4y=-1+tsin3π4
(t為參數);即為x=2-22ty=-1+22t(t為參數).故為:x=2-22ty=-1+22t(t為參數).18.已知△ABC的頂點坐標為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長為______.答案:D在BC上,且S△ABC=3S△ABD,∴D點為BC邊上的三等分點則D點分線段BC所成的比為12則易求出D點坐標為:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故為:3219.鐵路托運行李,從甲地到乙地,按規定每張客票托運行李不超過50kg時,每千克0.2元,超過50kg時,超過部分按每千克0.25元計算,畫出計算行李價格的算法框圖.答案:程序框圖:20.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點F且斜率為k(k>0)的直線與C相交于A、B兩點,若AF=3FB,則k=______.答案:設l為橢圓的右準線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.21.某校為了研究學生的性別和對待某一活動的態度(支持和不支持兩種態度)的關系,運用2×2列聯表進行獨立性檢驗,經計算K2=7.069,則所得到的統計學結論是:有()的把握認為“學生性別與支持該活動有關系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%
B.1%
C.99%
D.99.9%答案:C22.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因為已知a、b、c是實數,且a2+b2+c2=1根據柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.23.方程組的解集是(
)
A.{(-3,0)}
B.{-3,0}
C.(-3,0)
D.{(0,-3)}
答案:A24.設U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}25.如圖,在△ABC中,,,則實數λ的值為()
A.
B.
C.
D.
答案:D26.當a>0時,設命題P:函數f(x)=x+ax在區間(1,2)上單調遞增;命題Q:不等式x2+ax+1>0對任意x∈R都成立.若“P且Q”是真命題,則實數a的取值范圍是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函數f(x)=x+ax在區間(1,2)上單調遞增;∴f′(x)≥0在區間(1,2)上恒成立,∴1-ax2≥0在區間(1,2)上恒成立,即a≤x2在區間(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0對任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命題,則P且Q都是真命題,故由①②的交集得:0<a≤1,則實數a的取值范圍是0<a≤1.故選A.27.已知函數f(x)=ax,(a>0,a≠1)的圖象經過點P(12,12),則常數a的值為()A.2B.4C.12D.14答案:∵函數f(x)=ax,(a>0,a≠1)的圖象經過點P(12,12),∴a12=12,?a=14.故選D.28.已知M(x0,y0)是圓x2+y2=r2(r>0)內異于圓心的一點,則直線x0x+y0y=r2與此圓有何種位置關系?答案:圓心O(0,0)到直線x0x+y0y=r2的距離為d=r2x20+y20.∵P(x0,y0)在圓內,∴x20+y20<r.則有d>r,故直線和圓相離.29.設隨機變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()
A.
B.
C.
D.答案:C30.橢圓=1的焦點為F1,點P在橢圓上,如果線段PF1的中點M在y軸上,那么點M的縱坐標是()
A.±
B.±
C.±
D.±答案:A31.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當a≠0且a≠-1時,1a=a1≠-2a-2-a-1,解之得a=1當a=0時,兩條直線垂直;當a=-1時,兩條直線重合故為:132.雙曲線的實軸長和焦距分別為()
A.
B.
C.
D.答案:C33.函數f(x)=2x2+1,&x∈[0,2],則函數f(x)的值域為()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設y=2t,t=x2+1∈[1,5],∵y=2t是增函數,∴t=1時,ymin=2;t=5時,ymax=25=32.∴函數f(x)的值域為[2,32].故為:C.34.袋中裝著標有數字1,2,3,4的小球各3個,從袋中任取3個小球,每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數字互不相同的概率;
(Ⅱ)用X表示取出的3個小球上所標的最大數字,求隨機變量X的分布列和均值.答案:(I)由題意知本題是一個古典概型,試驗發生包含的事件數C123,滿足條件的事件是取出的3個小球上的數字互不相同,共有C43C31C31C31記“一次取出的3個小球上的數字互不相同”的事件記為A,∴P(A)=C34?C13?C13?C13C312=2755.(II)由題意X所有可能的取值為:1,2,3,4.P(X=1)=1C312=1220;P(X=2)=C23?C13+C23?C13+C33C312=19220;P(X=3)=C26?C13+C16?C23+C33C312=64220=1655;P(X=4)=C29?C13+C19?C23+C33C312=136220=3455.∴隨機變量X的分布列為∴隨機變量X的期望為EX=1×1220+2×19220+3×1655+4×3455=15544.35.如圖1,一個“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B36.運用三段論推理:
復數不可以比較大小,(大前提)
2010和2011都是復數,(小前提)
2010和2011不可以比較大小.(結
論)
該推理是錯誤的,產生錯誤的原因是______錯誤.(填“大前提”或“小前提”)答案:根據三段論推理,是由兩個前提和一個結論組成,大前提:復數不可以比較大小,是錯誤的,該推理是錯誤的,產生錯誤的原因是大前提錯誤.故為:大前提37.下列函數中,與函數y=1x有相同定義域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函數y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正確;B、∵f(x)=1x,∴x≠0,故B錯誤;C、f(x)=x3,其定義域為R,故C錯誤;D、f(x)=ex,其定義域為R,故D錯誤;故選A.38.已知a=(1,2),則|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故為5.39.對于一組數據的兩個函數模型,其殘差平方和分別為153.4
和200,若從中選取一個擬合程度較好的函數模型,應選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.40.已知a為常數,a>0且a≠1,指數函數f(x)=ax和對數函數g(x)=logax的圖象分別為C1與C2,點M在曲線C1上,線段OM(O為坐標原點)與曲線C1的另一個交點為N,若曲線C2上存在一點P,且點P的橫坐標與點M的縱坐標相等,點P的縱坐標是點N的橫坐標2倍,則點P的坐標為______.答案:設點M的坐標為(m,am),點N的坐標為(n,an)∵點P的橫坐標與點M的縱坐標相等∴點P的坐標為(am,m)∵點P的縱坐標是點N的橫坐標2倍,∴m=2n而O、M、N三點共線則amm=ann=
am2m2解得:am=4即m=loga4∴點P的坐標為(4,loga4)故為:(4,loga4)41.已知|x|<ch,|y|>c>0.求證:|xy|<h.答案:證明:∵|y|>c>0∴0<|1y|<1c∵0<|x|<ch,∴|xy|<ch×1c=h.42.對于函數y=f(x),在給定區間上有兩個數x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數B.一定是減函數C.可能是常數函數D.單調性不能確定答案:解析:由單調性定義可知,不能用特殊值代替一般值.故選D.43.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數單位),求復數z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數單位),且z1z2為純虛數,求實數a的值.答案:(Ⅰ)設z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復數z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數則3a-8=0,且4a+6≠0,解得a=8344.定義直線關于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點A(3,0);②直線y=x關于圓C的圓心距單位λ=2,試寫出一個滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標為3,設圓心的縱坐標為r,則半徑為|r|>0,則圓心的坐標為(3,r).設圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=145.“∵四邊形ABCD為矩形,∴四邊形ABCD的對角線相等”,補充以上推理的大前提為()
A.正方形都是對角線相等的四邊形
B.矩形都是對角線相等的四邊形
C.等腰梯形都是對角線相等的四邊形
D.矩形都是對邊平行且相等的四邊形答案:B46.現有以下兩項調查:①某校高二年級共有15個班,現從中選擇2個班,檢查其清潔衛生狀況;②某市有大型、中型與小型的商店共1500家,三者數量之比為1:5:9.為了調查全市商店每日零售額情況,抽取其中15家進行調查.完成①、②這兩項調查宜采用的抽樣方法依次是()A.簡單隨機抽樣法,分層抽樣法B.系統抽樣法,簡單隨機抽樣法C.分層抽樣法,系統抽樣法D.系統抽樣法,分層抽樣法答案:從15個班中選擇2個班,檢查其清潔衛生狀況;總體個數不多,而且差異不大,故可采用簡單隨機抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項調查宜采用的抽樣方法依次是簡單隨機抽樣法,分層抽樣法故選A47.下列圖形中不一定是平面圖形的是(
)
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B48.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()
A.1
B.2
C.-2
D.-1答案:D49.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三點,n=(1,1,1),則以n為方向向量的直線l與平面ABC的關系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由題意,AB=(-1,1,0),BC=(0,-1,1)∵n?AB=0,n?BC=0∴以n為方向向量的直線l與平面ABC垂直故選A.50.圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側面積為84π,則圓臺較小底面的半徑為()A.7B.6C.5D.3答案:設上底面半徑為r,因為圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側面積為84π,所以S側面積=π(r+3r)l=84π,r=7故選A第2卷一.綜合題(共50題)1.______稱為向量的長度(或稱為模),記作
______,______稱為零向量,記作
______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.2.已知二次函數f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,若f(c)=0,且0<x<c時,f(x)>0
(1)證明:1a是f(x)的一個根;(2)試比較1a與c的大小.答案:證明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點,f(x)=0的兩個根x1,x2滿足x1x2=ca,又f(c)=0,不妨設x1=c∴x2=1a,即1a是f(x)=0的一個根.(2)假設1a<c,又1a>0由0<x<c時,f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個根不相等∴1a≠c,只有1a>c3.已知α1,α2,…αn∈(0,π),n是大于1的正整數,求證:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:證明:下面用數學歸納法證明(1)n=2時,|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|?|sinα2|<sinα1+sinα2,所以n=2時成立.(2)假設n=k(k≥2)時成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk當n=k+1時,|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|?|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1時也成立.由(1)(2)得,原式成立.4.由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,以這些棱錐的頂點為頂點的凸多面體的全面積是______.答案:由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,共可作6個,得到6個頂點,圍成一個正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對的兩頂點的距離應為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個側面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a25.若兩條平行線L1:x-y+1=0,與L2:3x+ay-c=0
(c>0)之間的距離為,則等于()
A.-2
B.-6
C..2
D.0答案:A6.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:19107.頻率分布直方圖的重心是()
A.眾數
B.中位數
C.標準差
D.平均數答案:D8.已知雙曲線的a=5,c=7,則該雙曲線的標準方程為()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C9.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運用類比方法,若三棱錐的三條側棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補成一個長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c2210.解不等式logx(2x+1)>logx2.答案:當0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;當x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.綜上所述,原不等式的解集為{x|0<x<12或x>1}.11.若直線l的方程為x=2,則該直線的傾斜角是()A.60°B.45°C.90°D.180°答案:∵直線l的方程為x=2∴直線l與x軸垂直∴直線l的傾斜角為90°故選C12.(理)已知函數f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是______.答案:作出函數的圖象如圖,直線y=y0交函數圖象于如圖,由正弦曲線的對稱性,可得A(a,y0)與B(b,y0)關于直線x=12對稱,因此a+b=1當直線線y=y0向上平移時,經過點(2011,1)時圖象兩個圖象恰有兩個公共點(A、B重合)所以0<y0<1時,兩個圖象有三個公共點,此時滿足f(a)=f(b)=f(c),(a、b、c互不相等),說明1<c<2011,因此可得a+b+c∈(2,2012)故為(2,2012)13.已知2a=3b=6c則有()
A.∈(2,3)
B.∈(3,4)
C.∈(4,5)
D.∈(5,6)答案:C14.若{、、}為空間的一組基底,則下列各項中,能構成基底的一組向量是[
]A.,+,﹣
B.,+,﹣
C.,+,﹣
D.+,﹣,+2答案:C15.求證:若圓內接五邊形的每個角都相等,則它為正五邊形.答案:證明:設圓內接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個三角形∵OA=OB=OC=OD=OE=半徑,∴有五個等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因為所有內角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形16.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結果用數值表示).答案:把AB看成一個整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數A77所以概率為A22A44A25A77=421故為:421.17.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關系為______.答案:∵a=log132<log131=0,又∵函數y=x12在(0,+∞)是增函數,∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.18.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.19.下列命題中正確的是()
A.若,則
B.若,則
.若,則
D.若,則答案:C20.如圖,在△ABC中,,,則實數λ的值為()
A.
B.
C.
D.
答案:D21.設a1,a2,…,an為正數,證明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:證明:∵a1,a2,…,an為正數,∴要證明a1+a2+…+ann≥n1a1+1a2+…+1an,只要證明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴兩式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.22.選修4-2:矩陣與變換
已知矩陣M=0110,N=0-110.在平面直角坐標系中,設直線2x-y+1=0在矩陣MN對應的變換作用下得到曲線F,求曲線F的方程.答案:由題設得MN=01100-111=100-1.…(3分)設(x,y)是直線2x-y+1=0上任意一點,點(x,y)在矩陣MN對應的變換作用下變為(x′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因為點(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.
…(10分)23.某學校準備調查高三年級學生完成課后作業所需時間,采取了兩種抽樣調查的方式:第一種由學生會的同學隨機對24名同學進行調查;第二種由教務處對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機抽樣B.簡單隨機抽樣,分層抽樣C.分層抽樣,系統抽樣D.簡單隨機抽樣,系統抽樣答案:學生會的同學隨機對24名同學進行調查,是簡單隨機抽樣,對年級的240名學生編號,由001到240,請學號最后一位為3的同學參加調查,是系統抽樣,故選D24.已知△ABC的頂點坐標分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()
A.2
B.6+
C.3+2
D.6+3答案:D25.如圖所示,圓的內接△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B26.直線l經過點A(2,-1)和點B(-1,5),其斜率為()
A.-2
B.2
C.-3
D.3答案:A27.例3.設a>0,b>0,解關于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化為ax-2≥bx或ax-2≤-bx,(1)對于不等式ax-2≤-bx,即(a+b)x≤2
因為a>0,b>0即:x≤2a+b.(2)對于不等式ax-2≥bx,即(a-b)x≥2①當a>b>0時,由①得x≥2a-b,∴此時,原不等式解為:x≥2a-b或x≤2a+b;當a=b>0時,由①得x∈?,∴此時,原不等式解為:x≤2a+b;當0<a<b時,由①得x≤2a-b,∴此時,原不等式解為:x≤2a+b.綜上可得,當a>b>0時,原不等式解集為(-∞,2a+b]∪[2a-b,+∞),當0<a≤b時,原不等式解集為(-∞,2a+b].28.命題“所以奇數的立方是奇數”的否定是()
A.所有奇數的立方不是奇數
B.不存在一個奇數,它的立方不是奇數
C.存在一個奇數,它的立方不是奇數
D.不存在一個奇數,它的立方是奇數答案:C29.關于斜二測畫法畫直觀圖說法不正確的是()
A.在實物圖中取坐標系不同,所得的直觀圖有可能不同
B.平行于坐標軸的線段在直觀圖中仍然平行于坐標軸
C.平行于坐標軸的線段長度在直觀圖中仍然保持不變
D.斜二測坐標系取的角可能是135°答案:C30.設O是正△ABC的中心,則向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共線向量
D.共起點的向量答案:B31.假設兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設⊙O1及⊙O2為互相外切的兩個圓,其一外公切線為A1A2,切點為A1及A2令點O為連心線O1O2的中點,過O作OA⊥A1A2,由直角梯形的中位線性質得:OA=12(O1A1+O2A2)=12O1O2,∴以O1O2為直徑,即以O為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.32.在平面幾何里,我們知道,正三角形的外接圓和內切圓的半徑之比是2:1。拓展到空間,研究正四面體(四個面均為全等的正三角形的四面體)的外接球和內切球的半徑關系,可以得出的正確結論是:正四面體的外接球和內切球的半徑之比是(
)。答案:3:133.某射擊運動員在四次射擊中分別打出了9,x,10,8環的成績,已知這組數據的平均數為9,則這組數據的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環,這組數據的平均數為9,∴9+x+10+84,∴x=9,∴這組數據的方差是14(00+1+1)=12,故為:1234.如圖,CD是⊙O的直徑,AE切⊙O于點B,連接DB,若∠D=20°,則∠DBE的大小為()
A.20°
B.40°
C.60°
D.70°答案:D35.已知函數f(x)=x+3x+1(x≠-1).設數列{an}滿足a1=1,an+1=f(an),數列{bn}滿足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用數學歸納法證明bn≤(3-1)n2n-1;
(Ⅱ)證明Sn<233.答案:證明:(Ⅰ)當x≥0時,f(x)=1+2x+1≥1.因為a1=1,所以an≥1(n∈N*).下面用數學歸納法證明不等式bn≤(3-1)n2n-1.(1)當n=1時,b1=3-1,不等式成立,(2)假設當n=k時,不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,當n=k+1時,不等式也成立.根據(1)和(2),可知不等式對任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)?1-(3-12)n1-3-12<(3-1)?11-3-12=233.故對任意n∈N*,Sn<233.36.“a>1”是“1a<1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由1a<1得:當a>0時,有1<a,即a>1;當a<0時,不等式恒成立.所以1a<1?a>1或a<0從而a>1是1a<1的充分不必要條件.故應選:A37.參數方程(0<θ<2π)表示()
A.雙曲線的一支,這支過點(1,)
B.拋物線的一部分,這部分過(1,)
C.雙曲線的一支,這支過點(-1,)
D.拋物線的一部分,這部分過(-1,)答案:B38.設集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.39.雙曲線x2-4y2=4的兩個焦點F1、F2,P是雙曲線上的一點,滿足·=0,則△F1PF2的面積為()
A.1
B.
C.2
D.答案:A40.設a=log132,b=log1213,c=(12)0.3,則()A.a<b<cB.a<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.41.已知A、B、M三點不共線,對于平面ABM外的任意一點O,確定在下列條件下,點P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據空間向量共面的推論,P位于平面ABM內的充要條件是,∴P與A、B、M不共面.42.(幾何證明選講選做題)如圖,△ABC的外角平分線AD交外接圓于D,BD=4,則CD=______.答案:∵A、B、C、D共圓,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故為4.43.若長方體的三個面的對角線長分別是a,b,c,則長方體體對角線長為()A.a2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:設同一頂點的三條棱分別為x,y,z,則x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),則對角線長為12(a2+b2+c2)=22a2+b2+c2.故選C.44.下列命題中,錯誤的是()
A.平行于同一條直線的兩個平面平行
B.平行于同一個平面的兩個平面平行
C.一個平面與兩個平行平面相交,交線平行
D.一條直線與兩個平行平面中的一個相交,則必與另一個相交答案:A45.
已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B46.下列四個散點圖中,使用線性回歸模型擬合效果最好的是()
A.
B.
C.
D.
答案:D47.已知F1(-8,3),F2(2,3),動點P滿足PF1-PF2=10,則點P的軌跡是______.答案:由于兩點間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點P的軌跡應是一條射線.故為一條射線.48.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故選A.49.為了了解學校學生的身體發育情況,抽查了該校100名高中男生的體重情況,根據所得數據畫出樣本的頻率分布直方圖如圖所示,根據此圖,估計該校2000名高中男生中體重大于70.5公斤的人數為()
A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人數的頻率為:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人數為2000×0.181=362,故選B50.某地區居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區的電網銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量
(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量
(單位:千瓦時)低谷電價(單位:
元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費方式該家庭本月應付的電費為______元(用數字作答)答案:高峰時間段用電的電費為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費為118.1+30.3=148.4(元),故為:148.4.第3卷一.綜合題(共50題)1.若一元二次方程x2+(a-1)x+1-a2=0有兩個正實數根,則a的取值范圍是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C2.把一顆骰子擲兩次,觀察出現的點數,并記第一次出現的點數為a,第二次出現的點數為b,則點(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個古典概型,試驗發生包含的事件數是6×6=36種結果,滿足條件的事件是點(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結果,∴點在直線的下方的概率是636=16故選A.3.執行程序框圖,如果輸入的n是5,則輸出的p是()
A.1
B.2
C.3
D.5
答案:D4.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a5.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點,
(Ⅰ)求證:DM⊥EB;
(Ⅱ)設二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標系A-xyz,設CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22?12+02+
02=13,即cosβ=136.已知空間四邊形ABCD的對角線為AC、BD,設G是CD的中點,則+(+)等于()
A.
B.
C.
D.
答案:C7.表示隨機事件發生的可能性大小的數叫做該事件的______.答案:根據概率的定義:表示隨機事件發生的可能性大小的數叫做該事件的概率;一個隨機事件發生的可能性很大,那么P的值接近1又不等于1,故為:概率.8.若直線l經過點M(1,5),且傾斜角為2π3,則直線l的參數方程為______.答案:由于過點(a,b)傾斜角為α的直線的參數方程為x=a+t?cosαy=b+t?sinα(t是參數),∵直線l經過點M(1,5),且傾斜角為2π3,故直線的參數方程是x=1+t?cos2π3y=5+t?sin2π3即x=1-12ty=5+32t(t為參數).故為:x=1-12ty=5+32t(t為參數).9.設P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點P的坐標
()
A.(-8,15)
B.(0,3)
C.(-,)
D.(1,)答案:A10.某市某年一個月中30天對空氣質量指數的監測數據如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的頻率分布表;
(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;
(Ⅲ)在本月空氣質量指數大于等于91的這些天中隨機選取兩天,求這兩天中至少有一天空氣質量指數在區間[101,111)內的概率.
分組頻數頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.
…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質量指數在區間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數頻率………[81,91)101030[91,101)3330………(Ⅲ)設A表示事件“在本月空氣質量指數大于等于91的這些天中隨機選取兩天,這兩天中至少有一天空氣質量指數在區間[101,111)內”,由己知,質量指數在區間[91,101)內的有3天,記這三天分別為a,b,c,質量指數在區間[101,111)內的有2天,記這兩天分別為d,e,則選取的所有可能結果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數為10.…(10分)事件“至少有一天空氣質量指數在區間[101,111)內”的可能結果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數為7,…(12分)所以P(A)=710.…(13分)11.若復數z=a+bi(a、b∈R)是虛數,則a、b應滿足的條件是()A.a=0,b≠0B.a≠0,b≠0C.a≠0,b∈RD.b≠0,a∈R答案:∵復數z=a+bi(a、b∈R)是虛數,∴根據虛數的定義得b≠0,a∈R,故選D.12.已知函數f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),則A、B、C的大小關系為______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是減函數,∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故為:A≤B≤C.13.已知圓C的圓心為(1,1),半徑為1.直線l的參數方程為x=2+tcosθy=2+tsinθ(t為參數),且θ∈[0,π3],點P的直角坐標為(2,2),直線l與圓C交于A,B兩點,求|PA|?|PB||PA|+|PB|的最小值.答案:圓C的普通方程是(x-1)2+(y-1)2=1,將直線l的參數方程代入并化簡得t2+2(sinθ+cosθ)t+1=0,由直線參數方程的幾何意義得|PA|+|PB|=2|sinθ+cosθ|,|PA|?|PB|=1所以|PA|?|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],當θ=π4時,|PA|?|PB||PA|+|PB|取得最小值122×1=24,所以|PA|?|PB||PA|+|PB|的最小值是24.14.已知直線l的參數方程為x=-4+4ty=-1-2t(t為參數),圓C的極坐標方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.15.如圖,AB是⊙O的直徑,P是AB延長線上的一點.過P作⊙O的切線,切點為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設圓的直徑是x則三角形ABC是一個含有30°角的三角形,∴BC=12AB,三角形BPC是一個等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:416.擬定從甲地到乙地通話m分鐘的電話費由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時間為5.5分鐘的話費為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.17.若將推理“四邊形的內角和為360°,所以平行四邊形的內角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內角和為360°,所以平行四邊形的內角和為360°”改為三段論的形式,因為四邊形的內角和為360°,平行四邊形是四邊形,所以平行四邊形的內角和為360°大前提:四邊形的內角和為360°;小前提:平行四邊形是四邊形;結論:平行四邊形的內角和為360°.故為:平行四邊形是四邊形.18.已知一個球與一個正三棱柱的三個側面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.設其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48319.當圓x=4cosθy=4sinθ上一點P的旋轉角為θ=23π時,點P的坐標為______.答案:根據圓的參數方程的意義,當圓x=4cosθy=4sinθ上一點P的旋轉角為θ=23π時,點P的坐標為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).20.某品牌平板電腦的采購商指導價為每臺2000元,若一次采購數量達到一定量,還可享受折扣.如圖為某位采購商根據折扣情況設計的算法程序框圖,若一次采購85臺該平板電腦,則S=______元.答案:分析程序中各變量、各語句,其作用是:表示一次采購共需花費的金額,再根據流程圖所示的順序,可知:該程序的作用是計算分段函數S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故為:15300.21.已知拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標準方程為x2=4y的焦點F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為y=1故為y=1.22.已知△ABC,D為AB邊上一點,若AD=2DB,CD=13CA+λCB,則λ=
.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(
CB-CA)=13CA+23CB,∴λ=23,故為:23.23.由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,以這些棱錐的頂點為頂點的凸多面體的全面積是______.答案:由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,共可作6個,得到6個頂點,圍成一個正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對的兩頂點的距離應為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個側面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a224.1
甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為,甲、丙兩臺機床加工的零件都是一等品的概率為
(1)分別求甲、乙、丙三臺機床各自加工零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率.答案:見解析解析:解:(1)設A、B、C分別為甲、乙、丙三臺機床各自加工的零件是一等品的事件①②③25.如圖,海中有一小島,周圍3.8海里內有暗礁.一軍艦從A地出發由西向東航行,望見小島B在北偏東75°,航行8海里到達C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續前進,問此艦有沒有觸礁的危險?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒有危險.26.證明:等腰三角形底邊上任意一點到兩腰的距離之和等于一腰上的高.答案:證明見解析:建立如圖所示的直角坐標系.設,,其中,.則直線的方程為,直線的方程為.設底邊上任意一點為,則到的距離;到的距離;到的距離.因為,所以,結論成立.27.極坐標系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點).答案:∵極坐標系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.28.編號為A、B、C、D、E的五個小球放在如圖所示的五個盒子中,要求每個盒子只能放一個小球,且A不能放1,2號,B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據題意,A不能放1,2號,則A可以放在3、4、5號盒子,分2種情況討論:①當A在4、5號盒子時,B有1種放法,剩下3個有A33=6種不同放法,此時,共有2×1×6=12種情況;②當A在3號盒子時,B有3種放法,剩下3個有A33=6種不同放法,此時,共有1×3×6=18種情況;由加法原理,計算可得共有12+18=30種不同情況;故選C.29.已知方程x2-6x+a=0的兩個不等實根均大于2,則實數a的取值范圍為()
A.[4,9)
B.(4,9]
C.(4,9)
D.(8,9)答案:D30.經過點P(4,-2)的拋物線的標準方程為()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C31.曲線x=sinθy=sin2θ(θ為參數)與直線y=a有兩個公共點,則實數a的取值范圍是______.答案:曲線
x=sinθy=sin2θ
(θ為參數),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.32.已知點A分BC所成的比為-13,則點B分AC所成的比為______.答案:由已知得B是AC的內分點,且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.33.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對其中6題,乙能答對其中8題.若規定每次考試分別都從這10題中隨機抽出3題進行測試,至少答對2題算合格.
(1)分別求甲、乙兩人考試合格的概率;
(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.34.方程組的解集是(
)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土地承包整地協議書
- 家庭水管改造協議書
- 庫存雜貨收購協議書
- 攝影基地掛牌協議書
- 維修住戶協議書模板
- 縮減工時協議書范本
- 孕婦工作免責協議書
- 員工勞務賠償協議書
- 無償實習協議書范本
- 銷售績效顧問協議書
- JJF 1603-2016(0.1~2.5)THz太赫茲光譜儀校準規范
- 醫藥衛生病原微生物檢測技術知識與技能比武競賽題庫
- 《民法典》-第二編 物權編-案例分析,解讀-3
- 膜片鉗常見問題匯總(人人都會膜片鉗)
- 講故事技能培訓
- 海岸動力學全冊配套完整課件
- 工作面防飛矸封閉式管理規定
- 干部人事檔案管理崗位培訓的講義課件
- 財務人員廉政談話記錄 財務個人談話記錄3篇
- 滬教牛津版小學三至六年級英語單詞表
- 質量整改通知單(樣板)
評論
0/150
提交評論