2022-2023學年長治市重點中學中考適應性考試數學試題含解析_第1頁
2022-2023學年長治市重點中學中考適應性考試數學試題含解析_第2頁
2022-2023學年長治市重點中學中考適應性考試數學試題含解析_第3頁
2022-2023學年長治市重點中學中考適應性考試數學試題含解析_第4頁
2022-2023學年長治市重點中學中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應的標號是A. B. C. D.2.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm23.如圖,直角坐標平面內有一點,那么與軸正半軸的夾角的余切值為()A.2 B. C. D.4.等腰中,,D是AC的中點,于E,交BA的延長線于F,若,則的面積為()A.40 B.46 C.48 D.505.如圖所示的幾何體,它的左視圖是()A. B. C. D.6.人的大腦每天能記錄大約8600萬條信息,數據8600用科學記數法表示為()A.0.86×104 B.8.6×102 C.8.6×103 D.86×1027.已知點,為是反比例函數上一點,當時,m的取值范圍是()A. B. C. D.8.共享單車已經成為城市公共交通的重要組成部分,某共享單車公司經過調查獲得關于共享單車租用行駛時間的數據,并由此制定了新的收費標準:每次租用單車行駛a小時及以內,免費騎行;超過a小時后,每半小時收費1元,這樣可保證不少于50%的騎行是免費的.制定這一標準中的a的值時,參考的統計量是此次調查所得數據的()A.平均數 B.中位數 C.眾數 D.方差9.民族圖案是數學文化中的一塊瑰寶.下列圖案中,既不是中心對稱圖形也不是軸對稱圖形的是()

A. B. C. D.10.關于反比例函數y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上11.如圖,兩個等直徑圓柱構成如圖所示的T形管道,則其俯視圖正確的是()A.B.C.D.12.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km二、填空題:(本大題共6個小題,每小題4分,共24分.)13.數學綜合實踐課,老師要求同學們利用直徑為的圓形紙片剪出一個如圖所示的展開圖,再將它沿虛線折疊成一個無蓋的正方體形盒子(接縫處忽略不計).若要求折出的盒子體積最大,則正方體的棱長等于________.14.函數y=+的自變量x的取值范圍是_____.15.從1,2,3,4,5,6,7,8這八個數中,任意抽取一個數,這個數恰好是合數的概率是__________.16.如果兩圓的半徑之比為,當這兩圓內切時圓心距為3,那么當這兩圓相交時,圓心距d的取值范圍是__________.17.已知點A,B的坐標分別為(﹣2,3)、(1,﹣2),將線段AB平移,得到線段A′B′,其中點A與點A′對應,點B與點B′對應,若點A′的坐標為(2,﹣3),則點B′的坐標為________.18.如圖,在正方形網格中,線段A′B′可以看作是線段AB經過若干次圖形的變化(平移、旋轉、軸對稱)得到的,寫出一種由線段AB得到線段A′B′的過程______三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)我們知道,平面內互相垂直且有公共原點的兩條數軸構成平面直角坐標系,如果兩條數軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數軸構成的是平面斜坐標系,兩條數軸稱為斜坐標系的坐標軸,公共原點稱為斜坐標系的原點,如圖1,經過平面內一點P作坐標軸的平行線PM和PN,分別交x軸和y軸于點M,N.點M、N在x軸和y軸上所對應的數分別叫做P點的x坐標和y坐標,有序實數對(x,y)稱為點P的斜坐標,記為P(x,y).(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點D,OA=2,OC=l.①點A、B、C在此斜坐標系內的坐標分別為A,B,C.②設點P(x,y)在經過O、B兩點的直線上,則y與x之間滿足的關系為.③設點Q(x,y)在經過A、D兩點的直線上,則y與x之間滿足的關系為.(2)若ω=120°,O為坐標原點.①如圖3,圓M與y軸相切原點O,被x軸截得的弦長OA=4,求圓M的半徑及圓心M的斜坐標.②如圖4,圓M的圓心斜坐標為M(2,2),若圓上恰有兩個點到y軸的距離為1,則圓M的半徑r的取值范圍是.20.(6分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內為原始森林保護區,在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區,為什么?(參考數據:≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?21.(6分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發現正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)22.(8分)計算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣123.(8分)用A4紙復印文件,在甲復印店不管一次復印多少頁,每頁收費0.1元.在乙復印店復印同樣的文件,一次復印頁數不超過20時,每頁收費0.12元;一次復印頁數超過20時,超過部分每頁收費0.09元.設在同一家復印店一次復印文件的頁數為x(x為非負整數).(1)根據題意,填寫下表:一次復印頁數(頁)5102030…甲復印店收費(元)0.52…乙復印店收費(元)0.62.4…(2)設在甲復印店復印收費y1元,在乙復印店復印收費y2元,分別寫出y1,y2關于x的函數關系式;(3)當x>70時,顧客在哪家復印店復印花費少?請說明理由.24.(10分)一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:(1)甲,乙兩組工作一天,商店各應付多少錢?(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結論)25.(10分)某汽車廠計劃半年內每月生產汽車20輛,由于另有任務,每月上班人數不一定相等,實每月生產量與計劃量相比情況如下表(增加為正,減少為負)生產量最多的一天比生產量最少的一天多生產多少輛?半年內總生產量是多少?比計劃多了還是少了,增加或減少多少?26.(12分)數學活動小組的小穎、小明和小華利用皮尺和自制的兩個直角三角板測量學校旗桿MN的高度,如示意圖,△ABC和△A′B′C′是他們自制的直角三角板,且△ABC≌△A′B′C′,小穎和小明分別站在旗桿的左右兩側,小穎將△ABC的直角邊AC平行于地面,眼睛通過斜邊AB觀察,一邊觀察一邊走動,使得A、B、M共線,此時,小華測量小穎距離旗桿的距離DN=19米,小明將△A′B′C′的直角邊B′C′平行于地面,眼睛通過斜邊B′A′觀察,一邊觀察一邊走動,使得B′、A′、M共線,此時,小華測量小明距離旗桿的距離EN=5米,經測量,小穎和小明的眼睛與地面的距離AD=1米,B′E=1.5米,(他們的眼睛與直角三角板頂點A,B′的距離均忽略不計),且AD、MN、B′E均與地面垂直,請你根據測量的數據,計算旗桿MN的高度.27.(12分)如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結FD、BE、BF,設OP=t.(1)直接寫出點E的坐標(用含t的代數式表示):;(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【點睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關鍵.2、A【解析】

根據已知得出圓錐的底面半徑及母線長,那么利用圓錐的側面積=底面周長×母線長÷2求出即可.【詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側面積=12×3π×3=4.5πcm2故選A.【點睛】此題主要考查了圓錐的有關計算,關鍵是利用圓錐的側面積=底面周長×母線長÷2得出.3、B【解析】

作PA⊥x軸于點A,構造直角三角形,根據三角函數的定義求解.【詳解】過P作x軸的垂線,交x軸于點A,

∵P(2,4),

∴OA=2,AP=4,.

∴∴.故選B.【點睛】本題考查的知識點是銳角三角函數的定義,解題關鍵是熟記三角函數的定義.4、C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.5、A【解析】

從左面觀察幾何體,能夠看到的線用實線,看不到的線用虛線.【詳解】從左邊看是等寬的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,

故選:A.【點睛】本題主要考查的是幾何體的三視圖,熟練掌握三視圖的畫法是解題的關鍵.6、C【解析】

科學記數法就是將一個數字表示成a×10的n次冪的形式,其中1≤|a|<10,n表示整數.n為整數位數減1,即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.【詳解】數據8600用科學記數法表示為8.6×103故選C.【點睛】用科學記數法表示一個數的方法是(1)確定a:a是只有一位整數的數;(2)確定n:當原數的絕對值≥10時,n為正整數,n等于原數的整數位數減1;當原數的絕對值<1時,n為負整數,n的絕對值等于原數中左起第一個非零數前零的個數(含整數位數上的零).7、A【解析】

直接把n的值代入求出m的取值范圍.【詳解】解:∵點P(m,n),為是反比例函數y=-圖象上一點,∴當-1≤n<-1時,∴n=-1時,m=1,n=-1時,m=1,則m的取值范圍是:1≤m<1.故選A.【點睛】此題主要考查了反比例函數圖象上點的坐標性質,正確把n的值代入是解題關鍵.8、B【解析】

根據需要保證不少于50%的騎行是免費的,可得此次調查的參考統計量是此次調查所得數據的中位數.【詳解】因為需要保證不少于50%的騎行是免費的,所以制定這一標準中的a的值時,參考的統計量是此次調查所得數據的中位數,故選B.【點睛】本題考查了中位數的知識,中位數是以它在所有標志值中所處的位置確定的全體單位標志值的代表值,不受分布數列的極大或極小值影響,從而在一定程度上提高了中位數對分布數列的代表性。9、C【解析】分析:根據軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.因此,A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,也不是中心對稱圖形,故本選項正確;D、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤.故選C.10、C【解析】

根據反比例函數y=的圖象上點的坐標特征,以及該函數的圖象的性質進行分析、解答.【詳解】A.反比例函數的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內,y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【點睛】本題主要考查反比例函數的性質.注意:反比例函數的增減性只指在同一象限內.11、B【解析】試題分析:三視圖就是主視圖(正視圖)、俯視圖、左視圖的總稱.從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.故選B考點:三視圖12、B【解析】

正負數的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點睛】本題考查正負數在生活中的應用.注意用正負數表示的量必須是具有相反意義的量.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據題意作圖,可得AB=6cm,設正方體的棱長為xcm,則AC=x,BC=3x,根據勾股定理對稱62=x2+(3x)2,解方程即可求得.【詳解】解:如圖示,根據題意可得AB=6cm,

設正方體的棱長為xcm,則AC=x,BC=3x,

根據勾股定理,AB2=AC2+BC2,即,

解得故答案為:.【點睛】本題考查了勾股定理的應用,正確理解題意是解題的關鍵.14、x≥1且x≠3【解析】

根據二次根式的有意義和分式有意義的條件,列出不等式求解即可.【詳解】根據二次根式和分式有意義的條件可得:解得:且故答案為:且【點睛】考查自變量的取值范圍,掌握二次根式和分式有意義的條件是解題的關鍵.15、.【解析】

根據合數定義,用合數的個數除以數的總數即為所求的概率.【詳解】∵在1,2,3,4,5,6,7,8這八個數中,合數有4、6、8這3個,∴這個數恰好是合數的概率是.故答案為:.【點睛】本題考查了概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A);找到合數的個數是解題的關鍵.16、.【解析】

先根據比例式設兩圓半徑分別為,根據內切時圓心距列出等式求出半徑,然后利用相交時圓心距與半徑的關系求解.【詳解】解:設兩圓半徑分別為,由題意,得3x-2x=3,解得,則兩圓半徑分別為,所以當這兩圓相交時,圓心距d的取值范圍是,即,故答案為.【點睛】本題考查了圓和圓的位置與兩圓的圓心距、半徑的數量之間的關系,熟練掌握圓心距與圓位置關系的數量關系是解決本題的關鍵.17、(5,﹣8)【解析】

各對應點之間的關系是橫坐標加4,縱坐標減6,那么讓點B的橫坐標加4,縱坐標減6即為點B′的坐標.【詳解】由A(-2,3)的對應點A′的坐標為(2,-13),坐標的變化規律可知:各對應點之間的關系是橫坐標加4,縱坐標減6,∴點B′的橫坐標為1+4=5;縱坐標為-2-6=-8;即所求點B′的坐標為(5,-8).故答案為(5,-8)【點睛】此題主要考查了坐標與圖形的變化-平移,解決本題的關鍵是根據已知對應點找到各對應點之間的變化規律.18、將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度【解析】

根據圖形的旋轉和平移性質即可解題.【詳解】解:將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度即可得到A′B′、【點睛】本題考查了旋轉和平移,屬于簡單題,熟悉旋轉和平移的概念是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①(2,0),(1,),(﹣1,);②y=x;③y=x,y=﹣x+;(2)①半徑為4,M(,);②﹣1<r<+1.【解析】

(1)①如圖2-1中,作BE∥OD交OA于E,CF∥OD交x軸于F.求出OE、OF、CF、OD、BE即可解決問題;②如圖2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行線分線段成比例定理即可解決問題;③如圖3-3中,作QM∥OA交OD于M.利用平行線分線段成比例定理即可解決問題;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N.解直角三角形即可解決問題;②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1時,⊙M的半徑即可解決問題.【詳解】(1)①如圖2﹣1中,作BE∥OD交OA于E,CF∥OD交x軸于F,由題意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=,∴A(2,0),B(1,),C(﹣1,),故答案為(2,0),(1,),(﹣1,);②如圖2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴=,∴,∴y=x;③如圖2﹣3中,作QM∥OA交OD于M,則有,∴,∴y=﹣x+,故答案為y=x,y=﹣x+;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N,∵ω=120°,OM⊥y軸,∴∠MOA=30°,∵MF⊥OA,OA=4,∴OF=FA=2,∴FM=2,OM=2FM=4,∵MN∥y軸,∴MN⊥OM,∴MN=,ON=2MN=,∴M(,);②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x軸,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等邊三角形,∴MN=,當FN=1時,MF=﹣1,當EN=1時,ME=+1,觀察圖象可知當⊙M的半徑r的取值范圍為﹣1<r<+1.故答案為:﹣1<r<+1.【點睛】本題考查圓綜合題、平行線分線段成比例定理、等邊三角形的判定和性質、平面直角坐標系等知識,解題的關鍵是學會添加常用輔助線,構造平行線解決問題,屬于中考壓軸題.20、(1)不會穿過森林保護區.理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區,也就是求C到MN的距離.要構造直角三角形,再解直角三角形;(2)根據題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護區.(2)設原計劃完成這項工程需要y天,則實際完成工程需要y-5根據題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.21、1米.【解析】試題分析:作BE⊥DH,知GH=BE、BG=EH=10,設AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°?x知CE=CH﹣EH=tan55°?x﹣10,根據BE=DE可得關于x的方程,解之可得.試題解析:解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=10,設AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°?x﹣10+35,解得:x≈45,∴CH=tan55°?x=1.4×45=1.答:塔桿CH的高為1米.點睛:本題考查了解直角三角形的應用,解答本題要求學生能借助仰角構造直角三角形并解直角三角形.22、1【解析】

本題涉及絕對值、特殊角的三角函數值、負指數冪、二次根式化簡、乘方5個考點,先針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果即可.【詳解】解:原式=2﹣+2×﹣3+1=1.【點睛】本題考查實數的綜合運算能力,是各地中考題中常見的計算題型,解決此類題目的關鍵是熟練掌握絕對值、特殊角的三角函數值、負指數冪、二次根式化簡、乘方等考點的運算.23、(1)1,3;1.2,3.3;(2)見解析;(3)顧客在乙復印店復印花費少.【解析】

(1)根據收費標準,列代數式求得即可;

(2)根據收費等于每頁收費乘以頁數即可求得y1=0.1x(x≥0);當一次復印頁數不超過20時,根據收費等于每頁收費乘以頁數即可求得y2=0.12x,當一次復印頁數超過20時,根據題意求得y2=0.09x+0.6;

(3)設y=y1-y2,得到y與x的函數關系,根據y與x的函數關系式即可作出判斷.【詳解】解:(1)當x=10時,甲復印店收費為:0,1×10=1;乙復印店收費為:0.12×10=1.2;當x=30時,甲復印店收費為:0,1×30=3;乙復印店收費為:0.12×20+0.09×10=3.3;故答案為1,3;1.2,3.3;(2)y1=0.1x(x≥0);y2=;(3)顧客在乙復印店復印花費少;當x>70時,y1=0.1x,y2=0.09x+0.6,設y=y1﹣y2,∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,設y=0.01x﹣0.6,由0.01>0,則y隨x的增大而增大,當x=70時,y=0.1∴x>70時,y>0.1,∴y1>y2,∴當x>70時,顧客在乙復印店復印花費少.【點睛】本題考查了一次函數的應用,讀懂題目信息,列出函數關系式是解題的關鍵.24、(1)甲、乙兩組工作一天,商店各應付300元和140元;(2)單獨請乙組需要的費用少;(3)甲乙合作施工更有利于商店.【解析】

(1)設甲組單獨工作一天商店應付x元,乙組單獨工作一天商店應付y元,根據總費用與時間的關系建立方程組求出其解即可;

(2)由甲乙單獨完成需要的時間,再結合(1)求出甲、乙兩組單獨完成的費用進行比較就可以得出結論;

(3)先比較甲、乙單獨裝修的時間和費用誰對商店經營有利,再比較合作裝修與甲單獨裝修對商店的有利經營情況,從而可以得出結論.【詳解】解:(1)設:甲組工作一天商店應付x元,乙組工作一天商店付y元.由題意得:解得:答:甲、乙兩組工作一天,商店各應付300元和140元(2)單獨請甲組需要的費用:300×12=3600元.單獨請乙組需要的費用:24×140=3360元.答:單獨請乙組需要的費用少.(3)請兩組同時裝修,理由:甲單獨做,需費用3600元,少贏利200×12=2400元,相當于損失6000元;乙單獨做,需費用3360元,少贏利200X24=4800元,相當于損失8160元;甲乙合作,需費用3520元,少贏利200×8=1600元,相當于損失5120元;因為5120<6000<8160,所以甲乙合作損失費用最少,答:甲乙合作施工更有利于商店.【點睛】考查列二元一次方程組解實際問題的運用,工作總量=工作效率×工作時間的運用,設計推理方案的運用,解答時建立方程組求出甲乙單獨完成的工作時間是關鍵.25、(1)生產量最多的一天比生產量最少的一天多生產9輛;(2)半年內總生產量是121輛.比計劃多了1輛.【解析】

(1)由表格可知,四月生產最多為:20+4=24;六月最少為:20-5=15,兩者相減即可求解;

(2)把每月的生產量加起來即可,然后與計劃相比較.【詳解】(1)+4-(-5)=9(輛)答:生產量最多的一天比生產量最少的一天多生產9輛.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論