2022-2023學年榆林市重點中學中考數學全真模擬試題含解析_第1頁
2022-2023學年榆林市重點中學中考數學全真模擬試題含解析_第2頁
2022-2023學年榆林市重點中學中考數學全真模擬試題含解析_第3頁
2022-2023學年榆林市重點中學中考數學全真模擬試題含解析_第4頁
2022-2023學年榆林市重點中學中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.一個幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.2.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm3.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm4.如圖,以正方形ABCD的邊CD為邊向正方形ABCD外作等邊△CDE,AC與BE交于點F,則∠AFE的度數是()A.135° B.120° C.60° D.45°5.如圖,在平行四邊形ABCD中,AC與BD相交于O,且AO=BD=4,AD=3,則△BOC的周長為()A.9 B.10 C.12 D.146.當ab>0時,y=ax2與y=ax+b的圖象大致是()A. B. C. D.7.夏新同學上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為()元.A.+4B.﹣9C.﹣4D.+98.2022年冬奧會,北京、延慶、張家口三個賽區共25個場館,北京共12個,其中11個為2008年奧運會遺留場館,唯一一個新建的場館是國家速滑館,可容納12000人觀賽,將12000用科學記數法表示應為()A.12×10 B.1.2×10 C.1.2×10 D.0.12×109.已知一次函數y=kx+3和y=k1x+5,假設k<0且k1>0,則這兩個一次函數的圖像的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分線與AC交于點D,與AB交于點E,連接BD.若AD=14,則BC的長為_____.12.如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個菱形,容易知道當兩張紙條垂直時,菱形的周長有最小值8,那么菱形周長的最大值是_________.13.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.14.如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于y軸與點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE的面積為3,則k的值為_____.15.某學校要購買電腦,A型電腦每臺5000元,B型電腦每臺3000元,購買10臺電腦共花費34000元設購買A型電腦x臺,購買B型電腦y臺,則根據題意可列方程組為______.16.下列對于隨機事件的概率的描述:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,就會有50次“正面朝上”;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是0.2;③測試某射擊運動員在同一條件下的成績,隨著射擊次數的增加,“射中9環以上”的頻率總是在0.85附近擺動,顯示出一定的穩定性,可以估計該運動員“射中9環以上”的概率是0.85其中合理的有______(只填寫序號).三、解答題(共8題,共72分)17.(8分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數;(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數.18.(8分)華聯超市準備代銷一款運動鞋,每雙的成本是170元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是200元時,每天的銷售量是40雙,而銷售單價每降低1元,每天就可多售出5雙,設每雙降低x元(x為正整數),每天的銷售利潤為y元.求y與x的函數關系式;每雙運動鞋的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少?19.(8分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.20.(8分)如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.21.(8分)解方程:3x2﹣2x﹣2=1.22.(10分)如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.23.(12分)某農場急需銨肥8噸,在該農場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關系如圖所示.(1)根據圖象求出b關于a的函數解析式(包括自變量的取值范圍);(2)若農場到B公司的路程是農場到A公司路程的2倍,農場到A公司的路程為m千米,設農場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關于x的函數解析式(m為常數),并向農場建議總費用最低的購買方案.24.如圖,AB是⊙O的直徑,D為⊙O上一點,過弧BD上一點T作⊙O的切線TC,且TC⊥AD于點C.(1)若∠DAB=50°,求∠ATC的度數;(2)若⊙O半徑為2,TC=3,求AD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:由主視圖和左視圖可得此幾何體上面為臺,下面為柱體,由俯視圖為圓環可得幾何體為.故選D.考點:由三視圖判斷幾何體.視頻2、A【解析】試題分析:利用軸對稱圖形的性質得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質3、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.4、B【解析】

易得△ABF與△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度數即可.【詳解】∵四邊形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故選B.【點睛】此題考查正方形的性質,熟練掌握正方形及等邊三角形的性質,會運用其性質進行一些簡單的轉化.5、A【解析】

利用平行四邊形的性質即可解決問題.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周長=3+2+4=9,故選:A.【點睛】題考查了平行四邊形的性質和三角形周長的計算,平行四邊形的性質有:平行四邊形對邊平行且相等;平行四邊形對角相等,鄰角互補;平行四邊形對角線互相平分.6、D【解析】

∵ab>0,∴a、b同號.當a>0,b>0時,拋物線開口向上,頂點在原點,一次函數過一、二、三象限,沒有圖象符合要求;當a<0,b<0時,拋物線開口向下,頂點在原點,一次函數過二、三、四象限,B圖象符合要求.故選B.7、B【解析】

收入和支出是兩個相反的概念,故兩個數字分別為正數和負數.【詳解】收入13元記為+13元,那么支出9元記作-9元【點睛】本題主要考查了正負數的運用,熟練掌握正負數的概念是本題的關鍵.8、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】數據12000用科學記數法表示為1.2×104,故選:B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、B【解析】

依題意在同一坐標系內畫出圖像即可判斷.【詳解】根據題意可作兩函數圖像,由圖像知交點在第二象限,故選B.【點睛】此題主要考查一次函數的圖像,解題的關鍵是根據題意作出相應的圖像.10、C【解析】

根據AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據正方形內角及角平分線進行角度轉換證明EG=EB,FG=FB,即可判定②選項;設OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,FG=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質,相似三角形,菱形的判定與性質等四邊形的綜合題.該題難度較大,需要學生對有關于四邊形的性質的知識有一系統的掌握.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】解:∵DE是AB的垂直平分線,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案為1.點睛:本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,30°角所對的直角邊等于斜邊的一半的性質,熟記性質是解答本題的關鍵.12、1【解析】

畫出圖形,設菱形的邊長為x,根據勾股定理求出周長即可.【詳解】當兩張紙條如圖所示放置時,菱形周長最大,設這時菱形的邊長為xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周長為1cm.

故答案是:1.【點睛】解答關鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據圖形列方程.13、1【解析】

本題首先由等邊三角形的性質及垂直定義得到∠DBE=60°,∠BEC=90°,再根據等腰三角形的性質可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據三角形內角和定理得出關系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結論.【詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【點睛】本題主要考查等腰三角形的性質及等邊三角形的性質及垂直定義,解題的關鍵是根據三角形內角和定理列出符合題意的簡易方程,從而求出結果.14、.【解析】

由AE=3EC,△ADE的面積為3,可知△ADC的面積為4,再根據點D為OB的中點,得到△ADC的面積為梯形BOCA面積的一半,即梯形BOCA的面積為8,設A(x,),從而表示出梯形BOCA的面積關于k的等式,求解即可.【詳解】如圖,連接DC,∵AE=3EC,△ADE的面積為3,∴△CDE的面積為1.∴△ADC的面積為4.∵點A在雙曲線y=的第一象限的那一支上,∴設A點坐標為(x,).∵OC=2AB,∴OC=2x.∵點D為OB的中點,∴△ADC的面積為梯形BOCA面積的一半,∴梯形BOCA的面積為8.∴梯形BOCA的面積=,解得.【點睛】反比例函數綜合題,曲線上點的坐標與方程的關系,相似三角形的判定和性質,同底三角形面積的計算,梯形中位線的性質.15、【解析】試題解析:根據題意得:故答案為16、②③【解析】

大量反復試驗下頻率穩定值即概率.注意隨機事件發生的概率在0和1之間.根據事件的類型及概率的意義找到正確選項即可.【詳解】解:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,大約有50次“正面朝上”,此結論錯誤;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是,此結論正確;③測試某射擊運動員在同一條件下的成績,隨著射擊次數的增加,“射中9環以上”的頻率總是在0.85附近擺動,顯示出一定的穩定性,可以估計該運動員“射中9環以上”的概率是0.85,此結論正確;故答案為:②③.【點睛】本題考查了概率的意義,解題的關鍵在于掌握計算公式.三、解答題(共8題,共72分)17、(1)45°;(2)26°.【解析】

(1)根據圓周角和圓心角的關系和圖形可以求得∠ABC和∠ABD的大小;(2)根據題意和平行線的性質、切線的性質可以求得∠OCD的大小.【詳解】(1)∵AB是⊙O的直徑,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D為弧AB的中點,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)連接OD,∵DP切⊙O于點D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一個外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【點睛】本題考查切線的性質、圓周角定理,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.18、(1)y=﹣5x2+110x+1200;(2)售價定為189元,利潤最大1805元【解析】

利潤等于(售價﹣成本)×銷售量,根據題意列出表達式,借助二次函數的性質求最大值即可;【詳解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵拋物線開口向下,∴當x=11時,y有最大值1805,答:售價定為189元,利潤最大1805元;【點睛】本題考查實際應用中利潤的求法,二次函數的應用;能夠根據題意列出合理的表達式是解題的關鍵.19、(1)見解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數定義即可得出結果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點睛】本題考查了等腰直角三角形的判定與性質、相似三角形的判定與性質、勾股定理、垂徑定理、三角函數等知識,熟練掌握相似三角形的判定與性質、勾股定理是關鍵.20、(1)見解析(2)圖中陰影部分的面積為π.【解析】

(1)連接OC.只需證明∠OCD=90°.根據等腰三角形的性質即可證明;(2)先根據直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴圖中陰影部分的面積為:-.21、【解析】

先找出a,b,c,再求出b2-4ac=28,根據公式即可求出答案.【詳解】解:x==即∴原方程的解為.【點睛】本題考查對解一元二次方程-提公因式法、公式法,因式分解法等知識點的理解和掌握,能熟練地運用公式法解一元二次方程是解此題的關鍵.22、(1)(2)作圖見解析;(3).【解析】

(1)利用平移的性質畫圖,即對應點都移動相同的距離.(2)利用旋轉的性質畫圖,對應點都旋轉相同的角度.(3)利用勾股定理和弧長公式求點B經過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網格問題;2.作圖(平移和旋轉變換);3.勾股定理;4.弧長的計算.23、(1)b=;(2)詳見解析.【解析】

(1)分別設兩段函數圖象的解析式,代入圖象上點的坐標求解即可;(2)先求出農場從A、B公司購買銨肥的費用,再求出農場從A、B公司購買銨肥的運輸費用,兩者之和即為總費用,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論