




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列滿足:)若正整數使得成立,則()A.16 B.17 C.18 D.192.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π3.已知角的終邊經過點,則A. B.C. D.4.設a=log73,,c=30.7,則a,b,c的大小關系是()A. B. C. D.5.函數的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.6.已知函數的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-37.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.8.設不等式組,表示的平面區域為,在區域內任取一點,則點的坐標滿足不等式的概率為A. B.C. D.9.已知圓與拋物線的準線相切,則的值為()A.1 B.2 C. D.410.在等差數列中,若為前項和,,則的值是()A.156 B.124 C.136 D.18011.已知某口袋中有3個白球和個黑球(),現從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數是.若,則=()A. B.1 C. D.212.函數在的圖象大致為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,為邊的中點,,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉一周,則所形成的幾何體的體積為.14.如圖,某市一學校位于該市火車站北偏東方向,且,已知是經過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學校道路,其中,,以學校為圓心,半徑為的四分之一圓弧分別與相切于點.當地政府欲投資開發區域發展經濟,其中分別在公路上,且與圓弧相切,設,的面積為.(1)求關于的函數解析式;(2)當為何值時,面積為最小,政府投資最低?15.已知實數,滿足約束條件,則的最大值是__________.16.已知向量,,,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中國,不僅是購物,而且從共享單車到醫院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現金的人數正在迅速增加。中國人民大學和法國調查公司益普索合作,調查了騰訊服務的6000名用戶,從中隨機抽取了60名,統計他們出門隨身攜帶現金(單位:元)如莖葉圖如示,規定:隨身攜帶的現金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據上述樣本數據,將列聯表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關?(2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數學期望的角度分析,選擇哪種優惠方案更劃算?附:0.0500.0100.0013.8416.63510.82818.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.19.(12分)隨著電子閱讀的普及,傳統紙質媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質廣告收入如下表所示:根據這9年的數據,對和作線性相關性檢驗,求得樣本相關系數的絕對值為0.243;根據后5年的數據,對和作線性相關性檢驗,求得樣本相關系數的絕對值為0.984.(1)如果要用線性回歸方程預測該雜志社2019年的紙質廣告收入,現在有兩個方案,方案一:選取這9年數據進行預測,方案二:選取后5年數據進行預測.從實際生活背景以及線性相關性檢驗的角度分析,你覺得哪個方案更合適?附:相關性檢驗的臨界值表:(2)某購物網站同時銷售某本暢銷書籍的紙質版本和電子書,據統計,在該網站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質版本和電子書同時購買的讀者比例為,現用此統計結果作為概率,若從上述讀者中隨機調查了3位,求購買電子書人數多于只購買紙質版本人數的概率.20.(12分)已知函數(),且只有一個零點.(1)求實數a的值;(2)若,且,證明:.21.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.22.(10分)已知函數f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數f(x)的單調區間;(2)設g(x)=f(x)1,若函數g(x)在上有兩個零點,求實數a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數列的相關計算,意在考查學生的計算能力和對于數列公式方法的綜合應用.2、C【解析】
兩函數的圖象如圖所示,則圖中|MN|最小,設M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.3、D【解析】因為角的終邊經過點,所以,則,即.故選D.4、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數的大小,找中間量作比較是一種常見的方法.5、A【解析】
求出函數在處的導數后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點睛】本題考查導數的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標,因此截距有正有負,本題屬于基礎題.6、B【解析】
根據求出再根據也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【點睛】本題主要考查導數的幾何意義,意在考查學生對這些知識的理解掌握水平.7、B【解析】
建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數,屬于中檔題.8、A【解析】
畫出不等式組表示的區域,求出其面積,再得到在區域內的面積,根據幾何概型的公式,得到答案.【詳解】畫出所表示的區域,易知,所以的面積為,滿足不等式的點,在區域內是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.9、B【解析】
因為圓與拋物線的準線相切,則圓心為(3,0),半徑為4,根據相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請在此輸入詳解!10、A【解析】
因為,可得,根據等差數列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數列前項和,解題關鍵是掌握等差中項定義和等差數列前項和公式,考查了分析能力和計算能力,屬于基礎題.11、B【解析】由題意或4,則,故選B.12、A【解析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,可得所得到的幾何體是由一個圓柱挖去兩個半球而成;其中,圓柱的底面半徑為1,母線長為2;體積為;兩個半球的半徑都為1,則兩個半球的體積為;則所求幾何體的體積為.考點:旋轉體的組合體.14、(1);(2).【解析】
(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,,進而表示直線的方程,由直線與圓相切構建關系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數值域可求得t的取值范圍,進而對原面積的函數用含t的表達式換元,再令進行換元,并構建新的函數,由二次函數性質即可求得最小值.【詳解】解:(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調遞減.所以,當,即時,取得最大值,取最小值.答:當時,面積為最小,政府投資最低.【點睛】本題考查三角函數的實際應用,應優先結合實際建立合適的數學模型,再按模型求最值,屬于難題.15、【解析】
令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當直線經過時,最大,且,故的最大值為.故答案為:.【點睛】本題考查線性規劃中非線性目標函數的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎題.16、2【解析】
由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點睛】本題主要考查了向量的坐標運算,向量垂直的性質,向量的模的計算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)列聯表見解析,99%;(2),;(3)第二種優惠方案更劃算.【解析】
(1)根據已知數據得出列聯表,再根據獨立性檢驗得出結論;(2)有數據可知,女性中“手機支付族”的概率為,知服從二項分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設實際付款元,,則的取值為1200,1080,1020,求出實際付款的期望,再比較兩個方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯列表:,所以,有99%的把握認為“手機支付族”與“性別”有關;(2)有數據可知,女性中“手機支付族”的概率為,,;(3)若選方案一,則需付款元若選方案二,設實際付款元,,則的取值為1200,1080,1020,,,,選擇第二種優惠方案更劃算【點睛】本題考查獨立性檢驗,二項分布的期望和方差,以及由期望值確定決策方案,屬于中檔題.18、(1)(2)(3)直線平面,證明見解析【解析】
取中點,連接,則,再由已知證明平面,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,求出平面的一個法向量.(1)求出的坐標,由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標,由,結合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點,連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設平面的一個法向量為.由,取,得.(1)證明:設直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設平面的一個法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查推理能力與計算能力,屬于中檔題.19、(1)選取方案二更合適;(2)【解析】
(1)可以預見,2019年的紙質廣告收入會接著下跌,前四年的增長趨勢已經不能作為預測后續數據的依據,而后5年的數據得到的相關系數的絕對值,所以有的把握認為與具有線性相關關系,從而可得結論;(2)求得購買電子書的概率為,只購買紙質書的概率為,購買電子書人數多于只購買紙質書人數有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質書,由此能求出購買電子書人數多于只購買紙質版本人數的概率.【詳解】(1)選取方案二更合適,理由如下:①題中介紹了,隨著電子閱讀的普及,傳統紙媒受到了強烈的沖擊,從表格中的數據中可以看出從2014年開始,廣告收入呈現逐年下降的趨勢,可以預見,2019年的紙質廣告收入會接著下跌,前四年的增長趨勢已經不能作為預測后續數據的依據.②相關系數越接近1,線性相關性越強,因為根據9年的數據得到的相關系數的絕對值,我們沒有理由認為與具有線性相關關系;而后5年的數據得到的相關系數的絕對值,所以有的把握認為與具有線性相關關系.(2)因為在該網站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質版本和電子書同時購買的讀者比例為,所以從該網站購買該書籍的大量讀者中任取一位,購買電子書的概率為,只購買紙質書的概率為,購買電子書人數多于只購買紙質書人數有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質書.概率為:.【點睛】本題主要考查最優方案的選擇,考查了相關關系的定義以及互斥事件的概率與獨立事件概率公式的應用,考查閱讀能力與運算求解能力,屬于中檔題.與實際應用相結合的題型也是高考命題的動向,這類問題的特點是通過現實生活的事例考查書本知識,解決這類問題的關鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉化為數學模型進行解答.20、(1)(2)證明見解析【解析】
(1)求導可得在上,在上,所以函數在時,取最小值,由函數只有一個零點,觀察可知則有,即可求得結果.(2)由(1)可知為最小值,則構造函數(),求導借助基本不等式可判斷為減函數,即可得,即則有,由已知可得,由,可知,因為時,為增函數,即可得證得結論.【詳解】(1)().因為,所以,令得,,且,,在上;在上;所以函數在時,取最小值,當最小值為0時,函數只有一個零點,易得,所以,解得.(2)由(1)得,函數,設(),則,設(),則,,所以為減函數,所以,即,所以,即,又,所以,又當時,為增函數,所以,即.【點睛】本題考查借助導數研究函數的單調性及最值,考查學生分析問題的能力,及邏輯推理能力,難度困難.21、(1)證明見解析;(2).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇淮安曙光雙語校2025年中考物理試題仿真試題(二)含解析
- 湖北省孝感市云夢縣2024-2025學年初三普通高校統一招生考試仿真卷(三)生物試題試卷含解析
- 新疆阿克蘇第一師第二中學2025屆3月初三教學測試(一)化學試題含解析
- 天津商業大學《空間創意與設計》2023-2024學年第一學期期末試卷
- 河南工業和信息化職業學院《大學英語基礎課程一》2023-2024學年第二學期期末試卷
- 瓶裝水銷售合同風險防范與合規經營考核試卷
- 煙草批發商產品策略考核試卷
- 漁業捕撈作業優化技術考核試卷
- 水電站施工安全管理規范與法規考核試卷
- 電力系統故障分析與設備保護策略考核試卷
- 2024年鄭州鐵路職業技術學院單招職業適應性測試題庫及答案解析
- 電廠機組UPS裝置安裝、調試項目“三措兩案”
- 靜電噴涂設備操作規程
- 社會工作本科畢業論文2
- MCGS網絡版訪問指導書
- 肝內膽管細胞癌的影像表現
- 隱患排查整改臺賬
- 臥床患者四肢關節功能鍛煉(優化版)課件
- 2023年部編版小學二年級下語文第八單元《世界之初》大單元教學設計
- 物業標識標牌設計方案
- 基于arduino的無線傳感器網絡室內定位方法的研究畢業論文
評論
0/150
提交評論